Sivasubramanian Palanisamy, Ganesan Karuppiah, Praveen Kumar, Shanmugam Dharmalingam, Suhail Mubarak, Carlo Santulli, Nadir Ayrilmis, Srikanth Karumuri
{"title":"工艺参数和材料选择对熔融沉积建模(FDM)三维打印产品质量的影响:综述","authors":"Sivasubramanian Palanisamy, Ganesan Karuppiah, Praveen Kumar, Shanmugam Dharmalingam, Suhail Mubarak, Carlo Santulli, Nadir Ayrilmis, Srikanth Karumuri","doi":"10.1155/adv/3480281","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This work presents an investigation on the quality of parts manufactured using fused deposition modeling (FDM), which is influenced by a large number of different elements. Some of which are based on the materials used in the production of the part, though others are rather pertinent to the process parameters. The manufacturing process and filament formulation has also a significant impact on the cost of the final product, as well as its physical, mechanical, and thermal properties. As the result, judicious combination of parameters can effectively act toward fine-tuning FDM toward three-dimensional printing (3DP) of pieces with quality fit-for-application. In this sense, the use of design of experiments (DOEs) is often needed for the purpose. Printing process parameters, including layer height, wall thickness, temperature, printing velocity, and tool path, have been discussed, in the understanding that 3DP time increases with decreasing layer thickness, and in turn increases production time and overall cost. A specific account is given on recent developments increasingly and more thoroughly focused on recognizing the impact of the process parameters and raw materials on the final product.</p>\n </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/adv/3480281","citationCount":"0","resultStr":"{\"title\":\"Effect of Process Parameters and Material Selection on the Quality of 3D Printed Products by Fused Deposition Modeling (FDM): A Review\",\"authors\":\"Sivasubramanian Palanisamy, Ganesan Karuppiah, Praveen Kumar, Shanmugam Dharmalingam, Suhail Mubarak, Carlo Santulli, Nadir Ayrilmis, Srikanth Karumuri\",\"doi\":\"10.1155/adv/3480281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>This work presents an investigation on the quality of parts manufactured using fused deposition modeling (FDM), which is influenced by a large number of different elements. Some of which are based on the materials used in the production of the part, though others are rather pertinent to the process parameters. The manufacturing process and filament formulation has also a significant impact on the cost of the final product, as well as its physical, mechanical, and thermal properties. As the result, judicious combination of parameters can effectively act toward fine-tuning FDM toward three-dimensional printing (3DP) of pieces with quality fit-for-application. In this sense, the use of design of experiments (DOEs) is often needed for the purpose. Printing process parameters, including layer height, wall thickness, temperature, printing velocity, and tool path, have been discussed, in the understanding that 3DP time increases with decreasing layer thickness, and in turn increases production time and overall cost. A specific account is given on recent developments increasingly and more thoroughly focused on recognizing the impact of the process parameters and raw materials on the final product.</p>\\n </div>\",\"PeriodicalId\":7372,\"journal\":{\"name\":\"Advances in Polymer Technology\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/adv/3480281\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Polymer Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/adv/3480281\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/adv/3480281","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effect of Process Parameters and Material Selection on the Quality of 3D Printed Products by Fused Deposition Modeling (FDM): A Review
This work presents an investigation on the quality of parts manufactured using fused deposition modeling (FDM), which is influenced by a large number of different elements. Some of which are based on the materials used in the production of the part, though others are rather pertinent to the process parameters. The manufacturing process and filament formulation has also a significant impact on the cost of the final product, as well as its physical, mechanical, and thermal properties. As the result, judicious combination of parameters can effectively act toward fine-tuning FDM toward three-dimensional printing (3DP) of pieces with quality fit-for-application. In this sense, the use of design of experiments (DOEs) is often needed for the purpose. Printing process parameters, including layer height, wall thickness, temperature, printing velocity, and tool path, have been discussed, in the understanding that 3DP time increases with decreasing layer thickness, and in turn increases production time and overall cost. A specific account is given on recent developments increasingly and more thoroughly focused on recognizing the impact of the process parameters and raw materials on the final product.
期刊介绍:
Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.