Erwan Bossavit, Oleksandra Yeromina, Dario Mastrippolito, Mariarosa Cavallo, Huichen Zhang, Tommaso Gemo, Albin Colle, Adrien Khalili, Andrei Shcherbakov, Lam Do Nguyen, Claire Abadie, Erwan Dandeu, Mathieu G. Silly, Bruno Gallas, Debora Pierucci, Aloyse Degiron, Peter Reiss, Emmanuel Lhuillier
{"title":"推进 III-V 量子点与光子结构的耦合以塑造其发射图","authors":"Erwan Bossavit, Oleksandra Yeromina, Dario Mastrippolito, Mariarosa Cavallo, Huichen Zhang, Tommaso Gemo, Albin Colle, Adrien Khalili, Andrei Shcherbakov, Lam Do Nguyen, Claire Abadie, Erwan Dandeu, Mathieu G. Silly, Bruno Gallas, Debora Pierucci, Aloyse Degiron, Peter Reiss, Emmanuel Lhuillier","doi":"10.1002/adom.202401601","DOIUrl":null,"url":null,"abstract":"<p>The development of optoelectronic devices based on III–V semiconductor colloidal quantum dots (CQDs) is highly sought after due to their reduced toxicity. While devices based on conventional CQDs (II–VI semiconductors, halide perovskites) have achieved impressive technological leaps since their discovery, the most mature of these compounds contain toxic heavy metal elements (Cd, Hg, or Pb), which are highly undesirable for safe industrial scale applications. The strong covalent bonds of III–V compounds like InP, InAs, or InSb prevent the release of their toxic atoms, making them safer. However, these same bonds create severe material constraints. Namely, their harsher reaction conditions and increased sensitivity to oxidation have kept most of the research focused on material development. Meanwhile, their integration into devices and their coupling to photonic structures lag behind. Here, the integration of InAs/ZnSe core-shell CQDs is advanced. First, the material parameters necessary to design plasmonic gratings coupled to the CQDs are elucidated and those gratings are fabricated. Angle-resolved spectroscopy shows that the plasmon modes successfully couple to the CQD layer's emission leading to a tunable directivity with a 15° linewidth. A 3-fold increase of the PL signal is achieved at normal incidence, thus advancing toward the goal of efficient outcoupling in LEDs.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 33","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202401601","citationCount":"0","resultStr":"{\"title\":\"Advancing the Coupling of III–V Quantum Dots to Photonic Structures to Shape Their Emission Diagram\",\"authors\":\"Erwan Bossavit, Oleksandra Yeromina, Dario Mastrippolito, Mariarosa Cavallo, Huichen Zhang, Tommaso Gemo, Albin Colle, Adrien Khalili, Andrei Shcherbakov, Lam Do Nguyen, Claire Abadie, Erwan Dandeu, Mathieu G. Silly, Bruno Gallas, Debora Pierucci, Aloyse Degiron, Peter Reiss, Emmanuel Lhuillier\",\"doi\":\"10.1002/adom.202401601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of optoelectronic devices based on III–V semiconductor colloidal quantum dots (CQDs) is highly sought after due to their reduced toxicity. While devices based on conventional CQDs (II–VI semiconductors, halide perovskites) have achieved impressive technological leaps since their discovery, the most mature of these compounds contain toxic heavy metal elements (Cd, Hg, or Pb), which are highly undesirable for safe industrial scale applications. The strong covalent bonds of III–V compounds like InP, InAs, or InSb prevent the release of their toxic atoms, making them safer. However, these same bonds create severe material constraints. Namely, their harsher reaction conditions and increased sensitivity to oxidation have kept most of the research focused on material development. Meanwhile, their integration into devices and their coupling to photonic structures lag behind. Here, the integration of InAs/ZnSe core-shell CQDs is advanced. First, the material parameters necessary to design plasmonic gratings coupled to the CQDs are elucidated and those gratings are fabricated. Angle-resolved spectroscopy shows that the plasmon modes successfully couple to the CQD layer's emission leading to a tunable directivity with a 15° linewidth. A 3-fold increase of the PL signal is achieved at normal incidence, thus advancing toward the goal of efficient outcoupling in LEDs.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"12 33\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202401601\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401601\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401601","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Advancing the Coupling of III–V Quantum Dots to Photonic Structures to Shape Their Emission Diagram
The development of optoelectronic devices based on III–V semiconductor colloidal quantum dots (CQDs) is highly sought after due to their reduced toxicity. While devices based on conventional CQDs (II–VI semiconductors, halide perovskites) have achieved impressive technological leaps since their discovery, the most mature of these compounds contain toxic heavy metal elements (Cd, Hg, or Pb), which are highly undesirable for safe industrial scale applications. The strong covalent bonds of III–V compounds like InP, InAs, or InSb prevent the release of their toxic atoms, making them safer. However, these same bonds create severe material constraints. Namely, their harsher reaction conditions and increased sensitivity to oxidation have kept most of the research focused on material development. Meanwhile, their integration into devices and their coupling to photonic structures lag behind. Here, the integration of InAs/ZnSe core-shell CQDs is advanced. First, the material parameters necessary to design plasmonic gratings coupled to the CQDs are elucidated and those gratings are fabricated. Angle-resolved spectroscopy shows that the plasmon modes successfully couple to the CQD layer's emission leading to a tunable directivity with a 15° linewidth. A 3-fold increase of the PL signal is achieved at normal incidence, thus advancing toward the goal of efficient outcoupling in LEDs.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.