Naveenkumar Perumal, Prakadeeswari Gopalakrishnan, Maria Burkovetskaya, David Doss, Shaker Dukkapatti, Ranjana K Kanchan, Sidharth Mahapatra
{"title":"核因子 I/B:癌症病理生理学中的双重作用。","authors":"Naveenkumar Perumal, Prakadeeswari Gopalakrishnan, Maria Burkovetskaya, David Doss, Shaker Dukkapatti, Ranjana K Kanchan, Sidharth Mahapatra","doi":"10.1016/j.canlet.2024.217349","DOIUrl":null,"url":null,"abstract":"<p><p>The nuclear factor I (NFI) family of transcription factors plays a decisive role in organ development and maturation. Their deregulation has been linked with various diseases, most notably cancer. NFIB stands apart from the other NFI family members given its unique ability to drive both tumor-suppressive and oncogenic programs. Thus, the ultimate impact of deregulated NFIB signaling is cancer-specific and strongly influenced by an intricate network of upstream regulators and downstream effectors. Deciphering the events that drive NFIB's paradoxical roles within cancer-specific networks will enable us to not only understand how this critical transcription factor enacts its dual roles but also drive innovations to help us effectively target NFIB in different cancers. Here, we provide an in-depth review of NFIB. Starting with its defining role in the development of various organs, most notably the central nervous system, we highlight critical signaling pathways and the impact of deregulation on neoplastic transformation, contrasting it with the effect of silencing alone. We then provide examples of its dual roles in various cancers, identifying specific signaling networks associated with oncogenesis versus tumor suppression. We incorporate an example of a cancer type, osteosarcoma, wherein NFIB enacts its dual functions and explore which pathways influence each function. In this manner, we suggest plausible mechanisms for its role-switching from cancers sharing common triggering events in the setting of NFIB deregulation. We also review how NFIB enhances aggressiveness by driving metastasis, stemness, and chemoresistance. We conclude with a discussion on efficacious ways to target NFIB and pose some unanswered questions that may further help solidify our understanding of NFIB and facilitate clinical translation of NFIB targeting.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":" ","pages":"217349"},"PeriodicalIF":9.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuclear Factor I/B: Duality in Action in Cancer Pathophysiology.\",\"authors\":\"Naveenkumar Perumal, Prakadeeswari Gopalakrishnan, Maria Burkovetskaya, David Doss, Shaker Dukkapatti, Ranjana K Kanchan, Sidharth Mahapatra\",\"doi\":\"10.1016/j.canlet.2024.217349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The nuclear factor I (NFI) family of transcription factors plays a decisive role in organ development and maturation. Their deregulation has been linked with various diseases, most notably cancer. NFIB stands apart from the other NFI family members given its unique ability to drive both tumor-suppressive and oncogenic programs. Thus, the ultimate impact of deregulated NFIB signaling is cancer-specific and strongly influenced by an intricate network of upstream regulators and downstream effectors. Deciphering the events that drive NFIB's paradoxical roles within cancer-specific networks will enable us to not only understand how this critical transcription factor enacts its dual roles but also drive innovations to help us effectively target NFIB in different cancers. Here, we provide an in-depth review of NFIB. Starting with its defining role in the development of various organs, most notably the central nervous system, we highlight critical signaling pathways and the impact of deregulation on neoplastic transformation, contrasting it with the effect of silencing alone. We then provide examples of its dual roles in various cancers, identifying specific signaling networks associated with oncogenesis versus tumor suppression. We incorporate an example of a cancer type, osteosarcoma, wherein NFIB enacts its dual functions and explore which pathways influence each function. In this manner, we suggest plausible mechanisms for its role-switching from cancers sharing common triggering events in the setting of NFIB deregulation. We also review how NFIB enhances aggressiveness by driving metastasis, stemness, and chemoresistance. We conclude with a discussion on efficacious ways to target NFIB and pose some unanswered questions that may further help solidify our understanding of NFIB and facilitate clinical translation of NFIB targeting.</p>\",\"PeriodicalId\":9506,\"journal\":{\"name\":\"Cancer letters\",\"volume\":\" \",\"pages\":\"217349\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.canlet.2024.217349\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.canlet.2024.217349","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Nuclear Factor I/B: Duality in Action in Cancer Pathophysiology.
The nuclear factor I (NFI) family of transcription factors plays a decisive role in organ development and maturation. Their deregulation has been linked with various diseases, most notably cancer. NFIB stands apart from the other NFI family members given its unique ability to drive both tumor-suppressive and oncogenic programs. Thus, the ultimate impact of deregulated NFIB signaling is cancer-specific and strongly influenced by an intricate network of upstream regulators and downstream effectors. Deciphering the events that drive NFIB's paradoxical roles within cancer-specific networks will enable us to not only understand how this critical transcription factor enacts its dual roles but also drive innovations to help us effectively target NFIB in different cancers. Here, we provide an in-depth review of NFIB. Starting with its defining role in the development of various organs, most notably the central nervous system, we highlight critical signaling pathways and the impact of deregulation on neoplastic transformation, contrasting it with the effect of silencing alone. We then provide examples of its dual roles in various cancers, identifying specific signaling networks associated with oncogenesis versus tumor suppression. We incorporate an example of a cancer type, osteosarcoma, wherein NFIB enacts its dual functions and explore which pathways influence each function. In this manner, we suggest plausible mechanisms for its role-switching from cancers sharing common triggering events in the setting of NFIB deregulation. We also review how NFIB enhances aggressiveness by driving metastasis, stemness, and chemoresistance. We conclude with a discussion on efficacious ways to target NFIB and pose some unanswered questions that may further help solidify our understanding of NFIB and facilitate clinical translation of NFIB targeting.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.