穿心莲内酯通过上调 PPAR-α 减轻小鼠心肌缺血再灌注损伤

IF 4.5 2区 医学 Q2 CELL BIOLOGY Inflammation Pub Date : 2024-11-25 DOI:10.1007/s10753-024-02193-1
Shenjie Zhang, Ying Ye, Qi Li, Juan Zhao, Rongrong Song, Chao Huang, Xu Lu, Chen Huang, Le Yin, Qingsheng You
{"title":"穿心莲内酯通过上调 PPAR-α 减轻小鼠心肌缺血再灌注损伤","authors":"Shenjie Zhang, Ying Ye, Qi Li, Juan Zhao, Rongrong Song, Chao Huang, Xu Lu, Chen Huang, Le Yin, Qingsheng You","doi":"10.1007/s10753-024-02193-1","DOIUrl":null,"url":null,"abstract":"<p><p>Andrographolide (AGP), a bioactive diterpene lactone, is an active constituent extracted from Andrographis paniculata. It has many biological activities, such as antioxidant, antitumor, antivirus, anti-inflammation, hepatoprotection, and cardioprotection. The aim of the present study is to investigate the cardioprotective effects of AGP in a mouse model of myocardial ischemia-reperfusion injury (MIRI). Adult male C57BL/6 J mice were pre-treated orally with AGP (25 mg/kg) for six days. After 30 min of the left anterior descending coronary artery occlusion followed by 24 h of reperfusion, mice received an additional dose of AGP. The results showed that: (i) AGP pretreatment significantly reduced myocardial infarct size and cardiac injury biomarkers in MIRI mice and improved left ventricular ejection fraction (EF) and fractional shortening (FS); (ii) AGP pretreatment attenuated MIRI-induced oxidative stress imbalance in MIRI mice by increasing total antioxidant capacity (T-AOC) and reducing the levels of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), nitric oxide (NO), malondialdehyde (MDA), and dihydroethidium (DHE); (iii) AGP pretreatment increased Bcl-2 expression and decreased caspase-3 and Bax expression in ischemic myocardial tissue, along with a reduction in TUNEL-positive cells. Further analysis showed that stimulation by I/R decreased peroxisome proliferator-activated receptor-α (PPAR-α) expression in ischemic cardiac tissue, which was prevented by AGP administration. Moreover, administration of the PPAR-α antagonist GW6471 (1 mg/kg) abolished the protective effect of AGP on oxidative stress and apoptosis in the ischemic heart tissue of mice stimulated by ischemia-reperfusion. Taken together, these results suggest that AGP attenuates MIRI-induced cardiac injury by up-regulating PPAR-α expression, thereby preventing oxidative stress and cellular apoptosis.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Andrographolide Attenuates Myocardial Ischemia-Reperfusion Injury in Mice by Up-Regulating PPAR-α.\",\"authors\":\"Shenjie Zhang, Ying Ye, Qi Li, Juan Zhao, Rongrong Song, Chao Huang, Xu Lu, Chen Huang, Le Yin, Qingsheng You\",\"doi\":\"10.1007/s10753-024-02193-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Andrographolide (AGP), a bioactive diterpene lactone, is an active constituent extracted from Andrographis paniculata. It has many biological activities, such as antioxidant, antitumor, antivirus, anti-inflammation, hepatoprotection, and cardioprotection. The aim of the present study is to investigate the cardioprotective effects of AGP in a mouse model of myocardial ischemia-reperfusion injury (MIRI). Adult male C57BL/6 J mice were pre-treated orally with AGP (25 mg/kg) for six days. After 30 min of the left anterior descending coronary artery occlusion followed by 24 h of reperfusion, mice received an additional dose of AGP. The results showed that: (i) AGP pretreatment significantly reduced myocardial infarct size and cardiac injury biomarkers in MIRI mice and improved left ventricular ejection fraction (EF) and fractional shortening (FS); (ii) AGP pretreatment attenuated MIRI-induced oxidative stress imbalance in MIRI mice by increasing total antioxidant capacity (T-AOC) and reducing the levels of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), nitric oxide (NO), malondialdehyde (MDA), and dihydroethidium (DHE); (iii) AGP pretreatment increased Bcl-2 expression and decreased caspase-3 and Bax expression in ischemic myocardial tissue, along with a reduction in TUNEL-positive cells. Further analysis showed that stimulation by I/R decreased peroxisome proliferator-activated receptor-α (PPAR-α) expression in ischemic cardiac tissue, which was prevented by AGP administration. Moreover, administration of the PPAR-α antagonist GW6471 (1 mg/kg) abolished the protective effect of AGP on oxidative stress and apoptosis in the ischemic heart tissue of mice stimulated by ischemia-reperfusion. Taken together, these results suggest that AGP attenuates MIRI-induced cardiac injury by up-regulating PPAR-α expression, thereby preventing oxidative stress and cellular apoptosis.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-024-02193-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02193-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

穿心莲内酯(AGP)是从穿心莲中提取的一种活性成分,是一种具有生物活性的二萜内酯。它具有多种生物活性,如抗氧化、抗肿瘤、抗病毒、抗炎、保肝和保护心脏等。本研究旨在探讨 AGP 在心肌缺血再灌注损伤(MIRI)小鼠模型中的心脏保护作用。成年雄性 C57BL/6 J 小鼠口服 AGP(25 毫克/千克)6 天。左前降支冠状动脉闭塞 30 分钟后,再灌注 24 小时,小鼠再接受一次额外剂量的 AGP。结果显示(i) AGP 预处理明显缩小了 MIRI 小鼠的心肌梗死面积和心脏损伤生物标志物,改善了左室射血分数(EF)和分数缩短(FS);(ii) AGP 预处理通过增加总抗氧化能力(T-AOC)和降低过氧化氢(H2O2)、一氧化氮(NO)、丙二醛(MDA)和二氢乙二胺(DHE)的水平,减轻了 MIRI 诱导的 MIRI 小鼠氧化应激失衡;(iii) AGP 预处理增加了缺血心肌组织中 Bcl-2 的表达,降低了 caspase-3 和 Bax 的表达,同时减少了 TUNEL 阳性细胞。进一步的分析表明,I/R 刺激会降低缺血心肌组织中过氧化物酶体增殖激活受体-α(PPAR-α)的表达,而服用 AGP 则可防止这种情况的发生。此外,给予 PPAR-α 拮抗剂 GW6471(1 毫克/千克)可消除 AGP 对缺血再灌注刺激下小鼠缺血心脏组织中氧化应激和细胞凋亡的保护作用。综上所述,这些结果表明,AGP 通过上调 PPAR-α 的表达,从而防止氧化应激和细胞凋亡,减轻了 MIRI 诱导的心脏损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Andrographolide Attenuates Myocardial Ischemia-Reperfusion Injury in Mice by Up-Regulating PPAR-α.

Andrographolide (AGP), a bioactive diterpene lactone, is an active constituent extracted from Andrographis paniculata. It has many biological activities, such as antioxidant, antitumor, antivirus, anti-inflammation, hepatoprotection, and cardioprotection. The aim of the present study is to investigate the cardioprotective effects of AGP in a mouse model of myocardial ischemia-reperfusion injury (MIRI). Adult male C57BL/6 J mice were pre-treated orally with AGP (25 mg/kg) for six days. After 30 min of the left anterior descending coronary artery occlusion followed by 24 h of reperfusion, mice received an additional dose of AGP. The results showed that: (i) AGP pretreatment significantly reduced myocardial infarct size and cardiac injury biomarkers in MIRI mice and improved left ventricular ejection fraction (EF) and fractional shortening (FS); (ii) AGP pretreatment attenuated MIRI-induced oxidative stress imbalance in MIRI mice by increasing total antioxidant capacity (T-AOC) and reducing the levels of hydrogen peroxide (H2O2), nitric oxide (NO), malondialdehyde (MDA), and dihydroethidium (DHE); (iii) AGP pretreatment increased Bcl-2 expression and decreased caspase-3 and Bax expression in ischemic myocardial tissue, along with a reduction in TUNEL-positive cells. Further analysis showed that stimulation by I/R decreased peroxisome proliferator-activated receptor-α (PPAR-α) expression in ischemic cardiac tissue, which was prevented by AGP administration. Moreover, administration of the PPAR-α antagonist GW6471 (1 mg/kg) abolished the protective effect of AGP on oxidative stress and apoptosis in the ischemic heart tissue of mice stimulated by ischemia-reperfusion. Taken together, these results suggest that AGP attenuates MIRI-induced cardiac injury by up-regulating PPAR-α expression, thereby preventing oxidative stress and cellular apoptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inflammation
Inflammation 医学-免疫学
CiteScore
9.70
自引率
0.00%
发文量
168
审稿时长
3.0 months
期刊介绍: Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.
期刊最新文献
Esaxerenone Inhibits Interferon-γ Induced Pyroptosis of Macrophages in the Lungs of Aldosterone-treated Mice. Targeted Demethylation of FOXP3-TSDR Enhances the Suppressive Capacity of STAT6-deficient Inducible T Regulatory Cells. TRPV1 Regulates Proinflammatory Properties of M1 Macrophages in Periodontitis Via NRF2. Iron Overload-Dependent Ferroptosis Aggravates LPS-Induced Acute Lung Injury by Impairing Mitochondrial Function. Regulation of Alternative Splicing of Lipid Metabolism Genes in Sepsis-Induced Liver Damage by RNA-Binding Proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1