{"title":"丹桂苦参汤对缺氧诱导的体外视网膜 Müller 细胞损伤的影响","authors":"Xilin Ge, Caoxin Huang, Wenting Chen, Chen Yang, Wenfang Huang, Jia Li, Shuyu Yang","doi":"10.4081/ejh.2024.4140","DOIUrl":null,"url":null,"abstract":"<p><p>Retinopathy is a common complication of diabetes mellitus and the leading cause of visual impairment. Danggui Buxue decoction (RRP) has been used as a traditional drug for the treatment of diabetic nephropathy for many years. The aim of this study was to investigate the effects of RRP on hypoxia-induced retinal Müller cell injury. A model of retinal Müller cell damage was created using high glucose levels (25 mmol/L) and/or exposure to low oxygen conditions (1% O2). RRP was given to rats by continuous gavage for 7 days to obtain drug-containing serum. After sterilization, the serum was added to the culture medium at a ratio of 10%. Cell viability, apoptosis, and cell proliferation were assessed using the CCK-8 kit, Annexin V-FITC/propidium iodide apoptosis kit, and EdU kit. The mRNA levels of angiogenesis factors (ANGPTL4, VEGF) and inflammatory factors (IL-1B, ICAM-1) were detected by RT-qPCR. Western blot analysis was employed to assess the levels of proteins related to the ATF4/CHOP pathway. Following hypoxia for 48 h and 72 h, there was a significant decrease in cell viability and proliferation, as well as a notable increase in apoptosis compared to the control group (21% O2). However, high glucose stimulation had no significant effect, and high glucose combined with hypoxia had no further damage to cells. After 48 h of exposure to low oxygen levels, the mRNA expression levels of ANGPTL4, VEGF, IL-1B, and ICAM-1 in retinal Müller cells were significantly higher than in the control group (21% O2). RRP treatment significantly alleviated the increase of cell apoptosis and the upregulation of IL-1B and-1 in retinal Müller cells induced by hypoxia. RRP has the potential to reduce the suppression of the ATF4/CHOP pathway in hypoxia-induced retinal Müller cells, and it significantly alleviates cell apoptosis through regulating inflammatory factors and the ATF4/CHOP pathway.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"68 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Danggui Buxue decoction on hypoxia-induced injury of retinal Müller cells <i>in vitro</i>.\",\"authors\":\"Xilin Ge, Caoxin Huang, Wenting Chen, Chen Yang, Wenfang Huang, Jia Li, Shuyu Yang\",\"doi\":\"10.4081/ejh.2024.4140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retinopathy is a common complication of diabetes mellitus and the leading cause of visual impairment. Danggui Buxue decoction (RRP) has been used as a traditional drug for the treatment of diabetic nephropathy for many years. The aim of this study was to investigate the effects of RRP on hypoxia-induced retinal Müller cell injury. A model of retinal Müller cell damage was created using high glucose levels (25 mmol/L) and/or exposure to low oxygen conditions (1% O2). RRP was given to rats by continuous gavage for 7 days to obtain drug-containing serum. After sterilization, the serum was added to the culture medium at a ratio of 10%. Cell viability, apoptosis, and cell proliferation were assessed using the CCK-8 kit, Annexin V-FITC/propidium iodide apoptosis kit, and EdU kit. The mRNA levels of angiogenesis factors (ANGPTL4, VEGF) and inflammatory factors (IL-1B, ICAM-1) were detected by RT-qPCR. Western blot analysis was employed to assess the levels of proteins related to the ATF4/CHOP pathway. Following hypoxia for 48 h and 72 h, there was a significant decrease in cell viability and proliferation, as well as a notable increase in apoptosis compared to the control group (21% O2). However, high glucose stimulation had no significant effect, and high glucose combined with hypoxia had no further damage to cells. After 48 h of exposure to low oxygen levels, the mRNA expression levels of ANGPTL4, VEGF, IL-1B, and ICAM-1 in retinal Müller cells were significantly higher than in the control group (21% O2). RRP treatment significantly alleviated the increase of cell apoptosis and the upregulation of IL-1B and-1 in retinal Müller cells induced by hypoxia. RRP has the potential to reduce the suppression of the ATF4/CHOP pathway in hypoxia-induced retinal Müller cells, and it significantly alleviates cell apoptosis through regulating inflammatory factors and the ATF4/CHOP pathway.</p>\",\"PeriodicalId\":50487,\"journal\":{\"name\":\"European Journal of Histochemistry\",\"volume\":\"68 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Histochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4081/ejh.2024.4140\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Histochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4081/ejh.2024.4140","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Effect of Danggui Buxue decoction on hypoxia-induced injury of retinal Müller cells in vitro.
Retinopathy is a common complication of diabetes mellitus and the leading cause of visual impairment. Danggui Buxue decoction (RRP) has been used as a traditional drug for the treatment of diabetic nephropathy for many years. The aim of this study was to investigate the effects of RRP on hypoxia-induced retinal Müller cell injury. A model of retinal Müller cell damage was created using high glucose levels (25 mmol/L) and/or exposure to low oxygen conditions (1% O2). RRP was given to rats by continuous gavage for 7 days to obtain drug-containing serum. After sterilization, the serum was added to the culture medium at a ratio of 10%. Cell viability, apoptosis, and cell proliferation were assessed using the CCK-8 kit, Annexin V-FITC/propidium iodide apoptosis kit, and EdU kit. The mRNA levels of angiogenesis factors (ANGPTL4, VEGF) and inflammatory factors (IL-1B, ICAM-1) were detected by RT-qPCR. Western blot analysis was employed to assess the levels of proteins related to the ATF4/CHOP pathway. Following hypoxia for 48 h and 72 h, there was a significant decrease in cell viability and proliferation, as well as a notable increase in apoptosis compared to the control group (21% O2). However, high glucose stimulation had no significant effect, and high glucose combined with hypoxia had no further damage to cells. After 48 h of exposure to low oxygen levels, the mRNA expression levels of ANGPTL4, VEGF, IL-1B, and ICAM-1 in retinal Müller cells were significantly higher than in the control group (21% O2). RRP treatment significantly alleviated the increase of cell apoptosis and the upregulation of IL-1B and-1 in retinal Müller cells induced by hypoxia. RRP has the potential to reduce the suppression of the ATF4/CHOP pathway in hypoxia-induced retinal Müller cells, and it significantly alleviates cell apoptosis through regulating inflammatory factors and the ATF4/CHOP pathway.
期刊介绍:
The Journal publishes original papers concerning investigations by histochemical and immunohistochemical methods, and performed with the aid of light, super-resolution and electron microscopy, cytometry and imaging techniques. Coverage extends to:
functional cell and tissue biology in animals and plants;
cell differentiation and death;
cell-cell interaction and molecular trafficking;
biology of cell development and senescence;
nerve and muscle cell biology;
cellular basis of diseases.
The histochemical approach is nowadays essentially aimed at locating molecules in the very place where they exert their biological roles, and at describing dynamically specific chemical activities in living cells. Basic research on cell functional organization is essential for understanding the mechanisms underlying major biological processes such as differentiation, the control of tissue homeostasis, and the regulation of normal and tumor cell growth. Even more than in the past, the European Journal of Histochemistry, as a journal of functional cytology, represents the venue where cell scientists may present and discuss their original results, technical improvements and theories.