细胞外囊泡 lncRNAs 是细胞间通信和循环癌症生物标志物的关键生物分子。

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Non-Coding RNA Pub Date : 2024-11-05 DOI:10.3390/ncrna10060054
Panagiotis Papoutsoglou, Antonin Morillon
{"title":"细胞外囊泡 lncRNAs 是细胞间通信和循环癌症生物标志物的关键生物分子。","authors":"Panagiotis Papoutsoglou, Antonin Morillon","doi":"10.3390/ncrna10060054","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are secreted by almost every cell type and are considered carriers of active biomolecules, such as nucleic acids, proteins, and lipids. Their content can be uptaken and released into the cytoplasm of recipient cells, thereby inducing gene reprogramming and phenotypic changes in the acceptor cells. Whether the effects of EVs on the physiology of recipient cells are mediated by individual biomolecules or the collective outcome of the total transferred EV content is still under debate. The EV RNA content consists of several types of RNA, such as messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA), the latter defined as transcripts longer than 200 nucleotides that do not code for proteins but have important established biological functions. This review aims to update our insights on the functional roles of EV and their cargo non-coding RNA during cancer progression, to highlight the utility of EV RNA as novel diagnostic or prognostic biomarkers in cancer, and to tackle the technological advances and limitations for EV RNA identification, integrity assessment, and preservation of its functionality.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"10 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587107/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extracellular Vesicle lncRNAs as Key Biomolecules for Cell-to-Cell Communication and Circulating Cancer Biomarkers.\",\"authors\":\"Panagiotis Papoutsoglou, Antonin Morillon\",\"doi\":\"10.3390/ncrna10060054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular vesicles (EVs) are secreted by almost every cell type and are considered carriers of active biomolecules, such as nucleic acids, proteins, and lipids. Their content can be uptaken and released into the cytoplasm of recipient cells, thereby inducing gene reprogramming and phenotypic changes in the acceptor cells. Whether the effects of EVs on the physiology of recipient cells are mediated by individual biomolecules or the collective outcome of the total transferred EV content is still under debate. The EV RNA content consists of several types of RNA, such as messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA), the latter defined as transcripts longer than 200 nucleotides that do not code for proteins but have important established biological functions. This review aims to update our insights on the functional roles of EV and their cargo non-coding RNA during cancer progression, to highlight the utility of EV RNA as novel diagnostic or prognostic biomarkers in cancer, and to tackle the technological advances and limitations for EV RNA identification, integrity assessment, and preservation of its functionality.</p>\",\"PeriodicalId\":19271,\"journal\":{\"name\":\"Non-Coding RNA\",\"volume\":\"10 6\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587107/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Coding RNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ncrna10060054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna10060054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞外囊泡(EVs)几乎由所有细胞类型分泌,被认为是核酸、蛋白质和脂质等活性生物大分子的载体。它们的内容物可以被吸收并释放到受体细胞的细胞质中,从而诱导受体细胞的基因重编程和表型变化。EV对受体细胞生理机能的影响究竟是由单个生物大分子介导的,还是由全部转移的EV内容物共同作用的结果,目前仍存在争议。EV RNA 含有多种类型的 RNA,如信使 RNA(mRNA)、microRNA(miRNA)和长非编码 RNA(lncRNA),后者是指长度超过 200 个核苷酸的转录本,不编码蛋白质,但具有重要的既定生物学功能。本综述旨在更新我们对 EV 及其所携带的非编码 RNA 在癌症进展过程中的功能作用的认识,强调 EV RNA 作为新型癌症诊断或预后生物标志物的效用,并探讨 EV RNA 鉴定、完整性评估和功能性保存方面的技术进步和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracellular Vesicle lncRNAs as Key Biomolecules for Cell-to-Cell Communication and Circulating Cancer Biomarkers.

Extracellular vesicles (EVs) are secreted by almost every cell type and are considered carriers of active biomolecules, such as nucleic acids, proteins, and lipids. Their content can be uptaken and released into the cytoplasm of recipient cells, thereby inducing gene reprogramming and phenotypic changes in the acceptor cells. Whether the effects of EVs on the physiology of recipient cells are mediated by individual biomolecules or the collective outcome of the total transferred EV content is still under debate. The EV RNA content consists of several types of RNA, such as messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA), the latter defined as transcripts longer than 200 nucleotides that do not code for proteins but have important established biological functions. This review aims to update our insights on the functional roles of EV and their cargo non-coding RNA during cancer progression, to highlight the utility of EV RNA as novel diagnostic or prognostic biomarkers in cancer, and to tackle the technological advances and limitations for EV RNA identification, integrity assessment, and preservation of its functionality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Non-Coding RNA
Non-Coding RNA Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍: Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.
期刊最新文献
LNC-ing Genetics in Mitochondrial Disease. Androgen Receptor and Non-Coding RNAs' Interaction in Renal Cell Carcinoma. Comparison of Three Computational Tools for the Prediction of RNA Tertiary Structures. Extracellular Vesicle lncRNAs as Key Biomolecules for Cell-to-Cell Communication and Circulating Cancer Biomarkers. Cardiomyopathies: The Role of Non-Coding RNAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1