{"title":"从废水中去除铬的现代绿色战略。","authors":"Komal Pandey, Baljeet Singh Saharan, Ravinder Kumar, Dilfuza Jabborova, Joginder Singh Duhan","doi":"10.3390/jox14040089","DOIUrl":null,"url":null,"abstract":"<p><p>Chromium is an essential element in various industrial processes, including stainless steel production, electroplating, metal finishing, leather tanning, photography, and textile manufacturing. However, it is also a well-documented contaminant of aquatic systems and agricultural land, posing significant economic and health challenges. The hexavalent form of chromium [Cr(VI)] is particularly toxic and carcinogenic, linked to severe health issues such as cancer, kidney disorders, liver failure, and environmental biomagnification. Due to the high risks associated with chromium contamination in potable water, researchers have focused on developing effective removal strategies. Among these strategies, biosorption has emerged as a promising, cost-effective, and energy-efficient method for eliminating toxic metals, especially chromium. This process utilizes agricultural waste, plants, algae, bacteria, fungi, and other biomass as adsorbents, demonstrating substantial potential for the remediation of heavy metals from contaminated environments at minimal cost. This review paper provides a comprehensive analysis of various strategies, materials, and mechanisms involved in the bioremediation of chromium, along with their commercial viability. It also highlights the advantages of biosorption over traditional chemical and physical methods, offering a thorough understanding of its applications and effectiveness.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 4","pages":"1670-1696"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587030/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modern-Day Green Strategies for the Removal of Chromium from Wastewater.\",\"authors\":\"Komal Pandey, Baljeet Singh Saharan, Ravinder Kumar, Dilfuza Jabborova, Joginder Singh Duhan\",\"doi\":\"10.3390/jox14040089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chromium is an essential element in various industrial processes, including stainless steel production, electroplating, metal finishing, leather tanning, photography, and textile manufacturing. However, it is also a well-documented contaminant of aquatic systems and agricultural land, posing significant economic and health challenges. The hexavalent form of chromium [Cr(VI)] is particularly toxic and carcinogenic, linked to severe health issues such as cancer, kidney disorders, liver failure, and environmental biomagnification. Due to the high risks associated with chromium contamination in potable water, researchers have focused on developing effective removal strategies. Among these strategies, biosorption has emerged as a promising, cost-effective, and energy-efficient method for eliminating toxic metals, especially chromium. This process utilizes agricultural waste, plants, algae, bacteria, fungi, and other biomass as adsorbents, demonstrating substantial potential for the remediation of heavy metals from contaminated environments at minimal cost. This review paper provides a comprehensive analysis of various strategies, materials, and mechanisms involved in the bioremediation of chromium, along with their commercial viability. It also highlights the advantages of biosorption over traditional chemical and physical methods, offering a thorough understanding of its applications and effectiveness.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"14 4\",\"pages\":\"1670-1696\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587030/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox14040089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox14040089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Modern-Day Green Strategies for the Removal of Chromium from Wastewater.
Chromium is an essential element in various industrial processes, including stainless steel production, electroplating, metal finishing, leather tanning, photography, and textile manufacturing. However, it is also a well-documented contaminant of aquatic systems and agricultural land, posing significant economic and health challenges. The hexavalent form of chromium [Cr(VI)] is particularly toxic and carcinogenic, linked to severe health issues such as cancer, kidney disorders, liver failure, and environmental biomagnification. Due to the high risks associated with chromium contamination in potable water, researchers have focused on developing effective removal strategies. Among these strategies, biosorption has emerged as a promising, cost-effective, and energy-efficient method for eliminating toxic metals, especially chromium. This process utilizes agricultural waste, plants, algae, bacteria, fungi, and other biomass as adsorbents, demonstrating substantial potential for the remediation of heavy metals from contaminated environments at minimal cost. This review paper provides a comprehensive analysis of various strategies, materials, and mechanisms involved in the bioremediation of chromium, along with their commercial viability. It also highlights the advantages of biosorption over traditional chemical and physical methods, offering a thorough understanding of its applications and effectiveness.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.