利用 DarkNet53 模型对前列腺癌进行多参数磁共振成像和格里森分级评分的分类和解读。

IF 2.6 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM Prostate Pub Date : 2024-11-25 DOI:10.1002/pros.24827
Vasantha Pragasam Gladis Pushparathi, Dhas Justin Xavier, Pandian Chitra, Gopalraj Kannan
{"title":"利用 DarkNet53 模型对前列腺癌进行多参数磁共振成像和格里森分级评分的分类和解读。","authors":"Vasantha Pragasam Gladis Pushparathi, Dhas Justin Xavier, Pandian Chitra, Gopalraj Kannan","doi":"10.1002/pros.24827","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prostate Cancer (PCa) increases the mortality rate of males worldwide and is caused by genetics, lifestyle, and age reasons. The existing automated PCa classification systems face difficulties with overfitting issues, and non-generalizability, leading to poor classification performance.</p><p><strong>Objective: </strong>On this account, this study proposes an automated classification of PCa from MRI images using a hybrid weighted mean of vectors-optimized DarkNet53 classifier model.</p><p><strong>Methodology: </strong>The proposed method suggests nonlocal mean filtering for noise reduction, N4ITK bias field correction to enhance image quality, and active contour-based segmentation for accurately identifying the disease region. The feature extraction utilizes the gray level run length matrix and shape features for effective feature extraction. A weighted mean of vectors optimization is used to optimize the feature selection process by hybridizing it with the DarkNet53 model for classification. Finally, the interpretation of achieving the classification has been demonstrated using the explainable AI Grad-CAM model.</p><p><strong>Results: </strong>After comparing the proposed work with various state-of-the-art algorithms, the proposed model achieves 99.31% accuracy, 98.24% sensitivity, and 98.46% specificity, respectively, highlighting the model's accomplishment using the DarkNet53 classifier.</p>","PeriodicalId":54544,"journal":{"name":"Prostate","volume":" ","pages":"e24827"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prostate Cancer Classification and Interpretation With Multiparametric Magnetic Resonance Imaging and Gleason Grade Score Using DarkNet53 Model.\",\"authors\":\"Vasantha Pragasam Gladis Pushparathi, Dhas Justin Xavier, Pandian Chitra, Gopalraj Kannan\",\"doi\":\"10.1002/pros.24827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Prostate Cancer (PCa) increases the mortality rate of males worldwide and is caused by genetics, lifestyle, and age reasons. The existing automated PCa classification systems face difficulties with overfitting issues, and non-generalizability, leading to poor classification performance.</p><p><strong>Objective: </strong>On this account, this study proposes an automated classification of PCa from MRI images using a hybrid weighted mean of vectors-optimized DarkNet53 classifier model.</p><p><strong>Methodology: </strong>The proposed method suggests nonlocal mean filtering for noise reduction, N4ITK bias field correction to enhance image quality, and active contour-based segmentation for accurately identifying the disease region. The feature extraction utilizes the gray level run length matrix and shape features for effective feature extraction. A weighted mean of vectors optimization is used to optimize the feature selection process by hybridizing it with the DarkNet53 model for classification. Finally, the interpretation of achieving the classification has been demonstrated using the explainable AI Grad-CAM model.</p><p><strong>Results: </strong>After comparing the proposed work with various state-of-the-art algorithms, the proposed model achieves 99.31% accuracy, 98.24% sensitivity, and 98.46% specificity, respectively, highlighting the model's accomplishment using the DarkNet53 classifier.</p>\",\"PeriodicalId\":54544,\"journal\":{\"name\":\"Prostate\",\"volume\":\" \",\"pages\":\"e24827\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prostate\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pros.24827\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostate","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pros.24827","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

背景:前列腺癌(PCa)增加了全球男性的死亡率,其成因与遗传、生活方式和年龄有关。现有的 PCa 自动分类系统面临着过拟合问题和不通用性等困难,导致分类效果不佳:有鉴于此,本研究提出了一种利用混合加权均值向量优化的 DarkNet53 分类器模型对核磁共振成像图像中的 PCa 进行自动分类的方法:该方法建议使用非局部均值滤波来降低噪声,使用 N4ITK 偏场校正来提高图像质量,使用基于主动轮廓的分割来准确识别疾病区域。特征提取利用灰度运行长度矩阵和形状特征进行有效特征提取。通过与用于分类的 DarkNet53 模型混合,使用向量加权平均优化来优化特征选择过程。最后,使用可解释的人工智能 Grad-CAM 模型演示了实现分类的解释:结果:在将所提出的工作与各种最先进的算法进行比较后,所提出的模型分别达到了 99.31% 的准确率、98.24% 的灵敏度和 98.46% 的特异性,突出了该模型在使用 DarkNet53 分类器时所取得的成就。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prostate Cancer Classification and Interpretation With Multiparametric Magnetic Resonance Imaging and Gleason Grade Score Using DarkNet53 Model.

Background: Prostate Cancer (PCa) increases the mortality rate of males worldwide and is caused by genetics, lifestyle, and age reasons. The existing automated PCa classification systems face difficulties with overfitting issues, and non-generalizability, leading to poor classification performance.

Objective: On this account, this study proposes an automated classification of PCa from MRI images using a hybrid weighted mean of vectors-optimized DarkNet53 classifier model.

Methodology: The proposed method suggests nonlocal mean filtering for noise reduction, N4ITK bias field correction to enhance image quality, and active contour-based segmentation for accurately identifying the disease region. The feature extraction utilizes the gray level run length matrix and shape features for effective feature extraction. A weighted mean of vectors optimization is used to optimize the feature selection process by hybridizing it with the DarkNet53 model for classification. Finally, the interpretation of achieving the classification has been demonstrated using the explainable AI Grad-CAM model.

Results: After comparing the proposed work with various state-of-the-art algorithms, the proposed model achieves 99.31% accuracy, 98.24% sensitivity, and 98.46% specificity, respectively, highlighting the model's accomplishment using the DarkNet53 classifier.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Prostate
Prostate 医学-泌尿学与肾脏学
CiteScore
5.10
自引率
3.60%
发文量
180
审稿时长
1.5 months
期刊介绍: The Prostate is a peer-reviewed journal dedicated to original studies of this organ and the male accessory glands. It serves as an international medium for these studies, presenting comprehensive coverage of clinical, anatomic, embryologic, physiologic, endocrinologic, and biochemical studies.
期刊最新文献
L1CAM mediates neuroendocrine phenotype acquisition in prostate cancer cells. Modern predictors and management of incidental prostate cancer at holmium enucleation of prostate. Effectiveness of androgen receptor pathway inhibitors and proton pump inhibitors. Reply to Letter to the Editor on "Impact of proton pump inhibitors on the efficacy of androgen receptor signaling inhibitors in metastatic castration-resistant prostate cancer patients". Bimodal imaging: Detection rate of clinically significant prostate cancer is higher in MRI lesions visible to transrectal ultrasound.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1