Pedro N. Vasconcelos;Fernanda C. L. Trindade;Bala Venkatesh;Walmir Freitas;Antonio C. Zambroni de Souza;Glauco N. Taranto
{"title":"支持带有隐藏 DER 的配电系统运行的混合指数非线性模型","authors":"Pedro N. Vasconcelos;Fernanda C. L. Trindade;Bala Venkatesh;Walmir Freitas;Antonio C. Zambroni de Souza;Glauco N. Taranto","doi":"10.1109/TPWRD.2024.3505843","DOIUrl":null,"url":null,"abstract":"With impending deep electrification powered by innumerable Distributed Energy Resources (DERs), modeling each DER individually is becoming a critical challenge to the Distribution System Operators (DSOs). Even though the DSOs know the total DER installed capacity at the feeder level, the exact individual type, location, and size of such generators may remain unknown. This paper proposes a mixed-integer nonlinear programming formulation to support the operation of distribution systems under massive DER integration. The proposal accurately estimates distribution system power flows, relying on a limited set of measurements. It aims to establish equivalent DER models representing hidden resources and improve the representation of limited-visibility networks. The only DER information required is the total solar and wind installed capacity at the feeder level. The performance is assessed by comparing estimated and measured values of bus voltage magnitudes and branch power flows. Results demonstrate the efficacy of the proposed formulation in accurately replicating measurements, achieving an accuracy of over 90% when estimating active power flows in unmetered branches.","PeriodicalId":13498,"journal":{"name":"IEEE Transactions on Power Delivery","volume":"40 1","pages":"484-496"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mixed-Integer Nonlinear Model to Support the Operation of Distribution Systems With Hidden DERs\",\"authors\":\"Pedro N. Vasconcelos;Fernanda C. L. Trindade;Bala Venkatesh;Walmir Freitas;Antonio C. Zambroni de Souza;Glauco N. Taranto\",\"doi\":\"10.1109/TPWRD.2024.3505843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With impending deep electrification powered by innumerable Distributed Energy Resources (DERs), modeling each DER individually is becoming a critical challenge to the Distribution System Operators (DSOs). Even though the DSOs know the total DER installed capacity at the feeder level, the exact individual type, location, and size of such generators may remain unknown. This paper proposes a mixed-integer nonlinear programming formulation to support the operation of distribution systems under massive DER integration. The proposal accurately estimates distribution system power flows, relying on a limited set of measurements. It aims to establish equivalent DER models representing hidden resources and improve the representation of limited-visibility networks. The only DER information required is the total solar and wind installed capacity at the feeder level. The performance is assessed by comparing estimated and measured values of bus voltage magnitudes and branch power flows. Results demonstrate the efficacy of the proposed formulation in accurately replicating measurements, achieving an accuracy of over 90% when estimating active power flows in unmetered branches.\",\"PeriodicalId\":13498,\"journal\":{\"name\":\"IEEE Transactions on Power Delivery\",\"volume\":\"40 1\",\"pages\":\"484-496\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Power Delivery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10767114/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Delivery","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10767114/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Mixed-Integer Nonlinear Model to Support the Operation of Distribution Systems With Hidden DERs
With impending deep electrification powered by innumerable Distributed Energy Resources (DERs), modeling each DER individually is becoming a critical challenge to the Distribution System Operators (DSOs). Even though the DSOs know the total DER installed capacity at the feeder level, the exact individual type, location, and size of such generators may remain unknown. This paper proposes a mixed-integer nonlinear programming formulation to support the operation of distribution systems under massive DER integration. The proposal accurately estimates distribution system power flows, relying on a limited set of measurements. It aims to establish equivalent DER models representing hidden resources and improve the representation of limited-visibility networks. The only DER information required is the total solar and wind installed capacity at the feeder level. The performance is assessed by comparing estimated and measured values of bus voltage magnitudes and branch power flows. Results demonstrate the efficacy of the proposed formulation in accurately replicating measurements, achieving an accuracy of over 90% when estimating active power flows in unmetered branches.
期刊介绍:
The scope of the Society embraces planning, research, development, design, application, construction, installation and operation of apparatus, equipment, structures, materials and systems for the safe, reliable and economic generation, transmission, distribution, conversion, measurement and control of electric energy. It includes the developing of engineering standards, the providing of information and instruction to the public and to legislators, as well as technical scientific, literary, educational and other activities that contribute to the electric power discipline or utilize the techniques or products within this discipline.