Mina53 可使组蛋白 H4 精氨酸 3 非对称二甲基化去甲基化,从而调节神经干细胞/祖细胞的特性

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-26 DOI:10.1038/s41467-024-54680-6
Lixiao Zhou, Xingsen Zhao, Jie Sun, Kun Zou, Xiaoli Huang, Liyang Yu, Mingxuan Wu, Yong Wang, Xuekun Li, Wen Yi
{"title":"Mina53 可使组蛋白 H4 精氨酸 3 非对称二甲基化去甲基化,从而调节神经干细胞/祖细胞的特性","authors":"Lixiao Zhou, Xingsen Zhao, Jie Sun, Kun Zou, Xiaoli Huang, Liyang Yu, Mingxuan Wu, Yong Wang, Xuekun Li, Wen Yi","doi":"10.1038/s41467-024-54680-6","DOIUrl":null,"url":null,"abstract":"<p>Arginine methylation of histones plays a critical role in regulating gene expression. The writers (methyltransferases) and readers of methylarginine marks are well-known, but the erasers–arginine demethylases–remain mysterious. Here we identify Myc-induced nuclear antigen 53 (Mina53), a jumonji C domain containing protein, as an arginine demethylase for removing asymmetric di-methylation at arginine 3 of histone H4 (H4R3me2a). Using a photoaffinity capture method, we first identify Mina53 as an interactor of H4R3me2a. Biochemical assays in vitro and in cells characterize the arginine demethylation activity of Mina53. Molecular dynamics simulations provide further atomic-level evidence that Mina53 acts on H4R3me2a. In a transgenic mouse model, specific <i>Mina53</i> deletion in neural stem/progenitor cells prevents H4R3me2a demethylation at distinct genes clusters, dysregulating genes important for neural stem/progenitor cell proliferation and differentiation, and consequently impairing the cognitive function of mice. Collectively, we identify Mina53 as a bona fide H4R3me2a eraser, expanding the understanding of epigenetic gene regulation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"80 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mina53 demethylates histone H4 arginine 3 asymmetric dimethylation to regulate neural stem/progenitor cell identity\",\"authors\":\"Lixiao Zhou, Xingsen Zhao, Jie Sun, Kun Zou, Xiaoli Huang, Liyang Yu, Mingxuan Wu, Yong Wang, Xuekun Li, Wen Yi\",\"doi\":\"10.1038/s41467-024-54680-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Arginine methylation of histones plays a critical role in regulating gene expression. The writers (methyltransferases) and readers of methylarginine marks are well-known, but the erasers–arginine demethylases–remain mysterious. Here we identify Myc-induced nuclear antigen 53 (Mina53), a jumonji C domain containing protein, as an arginine demethylase for removing asymmetric di-methylation at arginine 3 of histone H4 (H4R3me2a). Using a photoaffinity capture method, we first identify Mina53 as an interactor of H4R3me2a. Biochemical assays in vitro and in cells characterize the arginine demethylation activity of Mina53. Molecular dynamics simulations provide further atomic-level evidence that Mina53 acts on H4R3me2a. In a transgenic mouse model, specific <i>Mina53</i> deletion in neural stem/progenitor cells prevents H4R3me2a demethylation at distinct genes clusters, dysregulating genes important for neural stem/progenitor cell proliferation and differentiation, and consequently impairing the cognitive function of mice. Collectively, we identify Mina53 as a bona fide H4R3me2a eraser, expanding the understanding of epigenetic gene regulation.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54680-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54680-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

组蛋白的精氨酸甲基化在调节基因表达方面起着至关重要的作用。精氨酸甲基化标记的作者(甲基转移酶)和读者是众所周知的,但精氨酸去甲基化酶这个 "橡皮擦 "却依然神秘。在这里,我们发现 Myc 诱导的核抗原 53(Mina53)是一种含有 jumonji C 结构域的蛋白质,它是一种精氨酸去甲基化酶,可以去除组蛋白 H4(H4R3me2a)精氨酸 3 上的不对称二甲基化。通过光亲和捕获方法,我们首先确定了 Mina53 与 H4R3me2a 的相互作用。体外和细胞内的生化实验证实了 Mina53 的精氨酸去甲基化活性。分子动力学模拟进一步从原子层面证明了 Mina53 对 H4R3me2a 的作用。在转基因小鼠模型中,神经干/祖细胞中特异性的Mina53缺失会阻止不同基因簇的H4R3me2a去甲基化,使神经干/祖细胞增殖和分化的重要基因失调,从而损害小鼠的认知功能。总之,我们发现Mina53是一种真正的H4R3me2a清除剂,拓展了人们对表观遗传基因调控的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mina53 demethylates histone H4 arginine 3 asymmetric dimethylation to regulate neural stem/progenitor cell identity

Arginine methylation of histones plays a critical role in regulating gene expression. The writers (methyltransferases) and readers of methylarginine marks are well-known, but the erasers–arginine demethylases–remain mysterious. Here we identify Myc-induced nuclear antigen 53 (Mina53), a jumonji C domain containing protein, as an arginine demethylase for removing asymmetric di-methylation at arginine 3 of histone H4 (H4R3me2a). Using a photoaffinity capture method, we first identify Mina53 as an interactor of H4R3me2a. Biochemical assays in vitro and in cells characterize the arginine demethylation activity of Mina53. Molecular dynamics simulations provide further atomic-level evidence that Mina53 acts on H4R3me2a. In a transgenic mouse model, specific Mina53 deletion in neural stem/progenitor cells prevents H4R3me2a demethylation at distinct genes clusters, dysregulating genes important for neural stem/progenitor cell proliferation and differentiation, and consequently impairing the cognitive function of mice. Collectively, we identify Mina53 as a bona fide H4R3me2a eraser, expanding the understanding of epigenetic gene regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Structural insights into the mechanisms of urea permeation and distinct inhibition modes of urea transporters Spatial transcriptomics reveals substantial heterogeneity in triple-negative breast cancer with potential clinical implications Eliminating chemo-mechanical degradation of lithium solid-state battery cathodes during >4.5 V cycling using amorphous Nb2O5 coatings Mina53 demethylates histone H4 arginine 3 asymmetric dimethylation to regulate neural stem/progenitor cell identity Turing-type nanochannel membranes with extrinsic ion transport pathways for high-efficiency osmotic energy harvesting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1