{"title":"电荷密度能增强模拟聚苯乙烯磺化膜的传输和离子排斥能力","authors":"Ritwick Kali, Scott T. Milner","doi":"10.1021/acs.macromol.4c01565","DOIUrl":null,"url":null,"abstract":"Bound charge density is a critical design parameter for tuning water and ion diffusivity in polyelectrolyte membranes. Higher charge density results in increased water uptake and improved diffusivity (transport). However, the impact of bound charge density and consequent water uptake on ion exclusion is crucial for designing membranes with uncompromised selectivity. In this molecular simulation study, we investigate sulfonated polystyrene–polymethylbutylene (PSS–PMB) membranes at different sulfonation levels to explore the effects of bound charge density on water and ion transport and salt exclusion. Remarkably, the equilibrium water uptake per sulfonate group and pore size remain constant irrespective of sulfonation, while the pore morphology transforms significantly. At lower sulfonation levels, the tortuous pores are locally one-dimensional, while higher sulfonation results in locally two-dimensional pores and consequently a 2-fold increase in molecular diffusivity. This morphological change also increases ion concentration at the pore centers, resulting in improvement in salt exclusion of up to 50%.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"12 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge Density Can Enhance Both Transport and Ion Exclusion in Simulated Polystyrenesulfonated Membranes\",\"authors\":\"Ritwick Kali, Scott T. Milner\",\"doi\":\"10.1021/acs.macromol.4c01565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bound charge density is a critical design parameter for tuning water and ion diffusivity in polyelectrolyte membranes. Higher charge density results in increased water uptake and improved diffusivity (transport). However, the impact of bound charge density and consequent water uptake on ion exclusion is crucial for designing membranes with uncompromised selectivity. In this molecular simulation study, we investigate sulfonated polystyrene–polymethylbutylene (PSS–PMB) membranes at different sulfonation levels to explore the effects of bound charge density on water and ion transport and salt exclusion. Remarkably, the equilibrium water uptake per sulfonate group and pore size remain constant irrespective of sulfonation, while the pore morphology transforms significantly. At lower sulfonation levels, the tortuous pores are locally one-dimensional, while higher sulfonation results in locally two-dimensional pores and consequently a 2-fold increase in molecular diffusivity. This morphological change also increases ion concentration at the pore centers, resulting in improvement in salt exclusion of up to 50%.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.4c01565\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01565","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Charge Density Can Enhance Both Transport and Ion Exclusion in Simulated Polystyrenesulfonated Membranes
Bound charge density is a critical design parameter for tuning water and ion diffusivity in polyelectrolyte membranes. Higher charge density results in increased water uptake and improved diffusivity (transport). However, the impact of bound charge density and consequent water uptake on ion exclusion is crucial for designing membranes with uncompromised selectivity. In this molecular simulation study, we investigate sulfonated polystyrene–polymethylbutylene (PSS–PMB) membranes at different sulfonation levels to explore the effects of bound charge density on water and ion transport and salt exclusion. Remarkably, the equilibrium water uptake per sulfonate group and pore size remain constant irrespective of sulfonation, while the pore morphology transforms significantly. At lower sulfonation levels, the tortuous pores are locally one-dimensional, while higher sulfonation results in locally two-dimensional pores and consequently a 2-fold increase in molecular diffusivity. This morphological change also increases ion concentration at the pore centers, resulting in improvement in salt exclusion of up to 50%.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.