Elspeth K. H. Lee, Shang-Min Tsai, Julianne I. Moses, John M. C. Plane, Channon Visscher and Stephen J. Klippenstein
{"title":"氢为主系外行星大气的光化学磷-氢-氧网络","authors":"Elspeth K. H. Lee, Shang-Min Tsai, Julianne I. Moses, John M. C. Plane, Channon Visscher and Stephen J. Klippenstein","doi":"10.3847/1538-4357/ad8915","DOIUrl":null,"url":null,"abstract":"Due to the detection of phosphine (PH3) in the solar system gas giants Jupiter and Saturn, PH3 has long been suggested to be detectable in exosolar substellar atmospheres too. However, to date, direct detection of phosphine has proven to be elusive in exoplanet atmosphere surveys. We construct an updated phosphorus-hydrogen-oxygen (PHO) photochemical network suitable for the simulation of gas giant hydrogen-dominated atmospheres. Using this network, we examine PHO photochemistry in hot Jupiter and warm Neptune exoplanet atmospheres at solar and enriched metallicities. Our results show for HD 189733b-like hot Jupiters that HOPO, PO, and P2 are typically the dominant P carriers at pressures important for transit and emission spectra, rather than PH3. For GJ1214b-like warm Neptune atmospheres our results suggest that at solar metallicity PH3 is dominant in the absence of photochemistry, but is generally not in high abundance for all other chemical environments. At 10 and 100 times solar, small oxygenated phosphorus molecules such as HOPO and PO dominate for both thermochemical and photochemical simulations. The network is able to reproduce well the observed PH3 abundances on Jupiter and Saturn. Despite progress in improving the accuracy of the PHO network, large portions of the reaction rate data remain with approximate, uncertain, or missing values, which could change the conclusions of the current study significantly. Improving understanding of the kinetics of phosphorus-bearing chemical reactions will be a key undertaking for astronomers aiming to detect phosphine and other phosphorus species in both rocky and gaseous exoplanetary atmospheres in the near future.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Photochemical Phosphorus-Hydrogen-Oxygen Network for Hydrogen-dominated Exoplanet Atmospheres\",\"authors\":\"Elspeth K. H. Lee, Shang-Min Tsai, Julianne I. Moses, John M. C. Plane, Channon Visscher and Stephen J. Klippenstein\",\"doi\":\"10.3847/1538-4357/ad8915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the detection of phosphine (PH3) in the solar system gas giants Jupiter and Saturn, PH3 has long been suggested to be detectable in exosolar substellar atmospheres too. However, to date, direct detection of phosphine has proven to be elusive in exoplanet atmosphere surveys. We construct an updated phosphorus-hydrogen-oxygen (PHO) photochemical network suitable for the simulation of gas giant hydrogen-dominated atmospheres. Using this network, we examine PHO photochemistry in hot Jupiter and warm Neptune exoplanet atmospheres at solar and enriched metallicities. Our results show for HD 189733b-like hot Jupiters that HOPO, PO, and P2 are typically the dominant P carriers at pressures important for transit and emission spectra, rather than PH3. For GJ1214b-like warm Neptune atmospheres our results suggest that at solar metallicity PH3 is dominant in the absence of photochemistry, but is generally not in high abundance for all other chemical environments. At 10 and 100 times solar, small oxygenated phosphorus molecules such as HOPO and PO dominate for both thermochemical and photochemical simulations. The network is able to reproduce well the observed PH3 abundances on Jupiter and Saturn. Despite progress in improving the accuracy of the PHO network, large portions of the reaction rate data remain with approximate, uncertain, or missing values, which could change the conclusions of the current study significantly. Improving understanding of the kinetics of phosphorus-bearing chemical reactions will be a key undertaking for astronomers aiming to detect phosphine and other phosphorus species in both rocky and gaseous exoplanetary atmospheres in the near future.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ad8915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad8915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
由于在太阳系气态巨行星木星和土星中探测到了磷化氢(PH3),人们一直认为在太阳系外的亚恒星大气中也能探测到磷化氢。然而,迄今为止,在系外行星大气探测中直接探测到磷化氢还很难。我们构建了一个更新的磷-氢-氧(PHO)光化学网络,适用于模拟气态巨行星氢为主的大气。利用这个网络,我们研究了太阳和富金属性下热木星和暖海王星系外行星大气中的磷-氢-氧光化学。我们的研究结果表明,对于类似 HD 189733b 的热木星,在对过境和发射光谱有重要影响的压力下,HOPO、PO 和 P2 通常是主要的 P 载流子,而不是 PH3。对于类似 GJ1214b 的暖海王星大气,我们的研究结果表明,在太阳金属性条件下,PH3 在没有光化学作用的情况下占主导地位,但在所有其他化学环境下,PH3 的丰度通常不高。在 10 倍和 100 倍太阳亮度时,热化学和光化学模拟都以 HOPO 和 PO 等含氧磷小分子为主。该网络能够很好地再现木星和土星上观测到的 PH3 丰度。尽管在提高 PHO 网络的准确性方面取得了进展,但大部分反应速率数据仍然是近似值、不确定值或缺失值,这可能会极大地改变当前研究的结论。天文学家的目标是在不久的将来探测岩石和气态系外行星大气中的磷和其他磷物种,而加深对含磷化学反应动力学的了解将是一项关键工作。
A Photochemical Phosphorus-Hydrogen-Oxygen Network for Hydrogen-dominated Exoplanet Atmospheres
Due to the detection of phosphine (PH3) in the solar system gas giants Jupiter and Saturn, PH3 has long been suggested to be detectable in exosolar substellar atmospheres too. However, to date, direct detection of phosphine has proven to be elusive in exoplanet atmosphere surveys. We construct an updated phosphorus-hydrogen-oxygen (PHO) photochemical network suitable for the simulation of gas giant hydrogen-dominated atmospheres. Using this network, we examine PHO photochemistry in hot Jupiter and warm Neptune exoplanet atmospheres at solar and enriched metallicities. Our results show for HD 189733b-like hot Jupiters that HOPO, PO, and P2 are typically the dominant P carriers at pressures important for transit and emission spectra, rather than PH3. For GJ1214b-like warm Neptune atmospheres our results suggest that at solar metallicity PH3 is dominant in the absence of photochemistry, but is generally not in high abundance for all other chemical environments. At 10 and 100 times solar, small oxygenated phosphorus molecules such as HOPO and PO dominate for both thermochemical and photochemical simulations. The network is able to reproduce well the observed PH3 abundances on Jupiter and Saturn. Despite progress in improving the accuracy of the PHO network, large portions of the reaction rate data remain with approximate, uncertain, or missing values, which could change the conclusions of the current study significantly. Improving understanding of the kinetics of phosphorus-bearing chemical reactions will be a key undertaking for astronomers aiming to detect phosphine and other phosphorus species in both rocky and gaseous exoplanetary atmospheres in the near future.