{"title":"整合多个发射中心以调节铜锑/铋卤化物中的光致发光","authors":"Abdusalam Ablez, HaoWei Lin, Sheng-Mao Zhang, Guo-Yang Chen, Jia-Hua Luo, Kezhao Du, Zeping Wang, Xiao-Ying Huang","doi":"10.1039/d4qi02614d","DOIUrl":null,"url":null,"abstract":"Zero-dimensional (0-D) heterometallic halides containing multiple metal-halogen units are emerging optoelectronic materials with diverse photophysical properties. In this work, eight 0-D ionic compounds, including heterometallic halides [(Tp)3CuX]MX6 (Tp = protonated thiomorpholine; X = Cl, Br; M = Sb, Bi), monometallic halides (Tp)3MX6 (M = Bi when X = Cl; M = Bi, Sb when X = Br), and (Tp)Br have been synthesized. Their structures and photoluminescence have been comparatively studied. Inserting a CuX unit into the three (Tp)+ cation moieties of (Tp)3MX6 results in the formation of [(Tp)3CuX]MX6 with a complex cation of [(Tp)3CuX]3+. The assembly of two distinct metal-halogen units in the heterometallic halide enables charge transfer between the complex cation and anion unit, as verified by DFT calculations, and meanwhile achieves the wide modulation of the luminescent color (green to red region) resulting from the integration of both complex cationic and anionic emission centers in one single lattice of [(Tp)3CuBr]MBr6. The luminescence mechanisms of monometallic and heterometallic halides are elucidated by detailed structural and spectral comparisons. Moreover, the compound [(Tp)3CuBr]SbBr6 shows significant potential for low-temperature optical temperature sensing applications based on the fluorescence intensity ratio of its dual emissions, with absolute sensitivity (Sa) and relative sensitivity (Sr) values of 0.078 K-1 and 5.38% K-1, respectively. This study not only provides a new strategy for developing heterometallic halide photoluminescence materials, but also offers new ideas for a better understanding of the photophysical mechanism of 0-D heterometallic halides.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Multiple Emission Centers for Photoluminescence Regulation in Copper-Antimony/Bismuth Halides\",\"authors\":\"Abdusalam Ablez, HaoWei Lin, Sheng-Mao Zhang, Guo-Yang Chen, Jia-Hua Luo, Kezhao Du, Zeping Wang, Xiao-Ying Huang\",\"doi\":\"10.1039/d4qi02614d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zero-dimensional (0-D) heterometallic halides containing multiple metal-halogen units are emerging optoelectronic materials with diverse photophysical properties. In this work, eight 0-D ionic compounds, including heterometallic halides [(Tp)3CuX]MX6 (Tp = protonated thiomorpholine; X = Cl, Br; M = Sb, Bi), monometallic halides (Tp)3MX6 (M = Bi when X = Cl; M = Bi, Sb when X = Br), and (Tp)Br have been synthesized. Their structures and photoluminescence have been comparatively studied. Inserting a CuX unit into the three (Tp)+ cation moieties of (Tp)3MX6 results in the formation of [(Tp)3CuX]MX6 with a complex cation of [(Tp)3CuX]3+. The assembly of two distinct metal-halogen units in the heterometallic halide enables charge transfer between the complex cation and anion unit, as verified by DFT calculations, and meanwhile achieves the wide modulation of the luminescent color (green to red region) resulting from the integration of both complex cationic and anionic emission centers in one single lattice of [(Tp)3CuBr]MBr6. The luminescence mechanisms of monometallic and heterometallic halides are elucidated by detailed structural and spectral comparisons. Moreover, the compound [(Tp)3CuBr]SbBr6 shows significant potential for low-temperature optical temperature sensing applications based on the fluorescence intensity ratio of its dual emissions, with absolute sensitivity (Sa) and relative sensitivity (Sr) values of 0.078 K-1 and 5.38% K-1, respectively. This study not only provides a new strategy for developing heterometallic halide photoluminescence materials, but also offers new ideas for a better understanding of the photophysical mechanism of 0-D heterometallic halides.\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi02614d\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02614d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Integrating Multiple Emission Centers for Photoluminescence Regulation in Copper-Antimony/Bismuth Halides
Zero-dimensional (0-D) heterometallic halides containing multiple metal-halogen units are emerging optoelectronic materials with diverse photophysical properties. In this work, eight 0-D ionic compounds, including heterometallic halides [(Tp)3CuX]MX6 (Tp = protonated thiomorpholine; X = Cl, Br; M = Sb, Bi), monometallic halides (Tp)3MX6 (M = Bi when X = Cl; M = Bi, Sb when X = Br), and (Tp)Br have been synthesized. Their structures and photoluminescence have been comparatively studied. Inserting a CuX unit into the three (Tp)+ cation moieties of (Tp)3MX6 results in the formation of [(Tp)3CuX]MX6 with a complex cation of [(Tp)3CuX]3+. The assembly of two distinct metal-halogen units in the heterometallic halide enables charge transfer between the complex cation and anion unit, as verified by DFT calculations, and meanwhile achieves the wide modulation of the luminescent color (green to red region) resulting from the integration of both complex cationic and anionic emission centers in one single lattice of [(Tp)3CuBr]MBr6. The luminescence mechanisms of monometallic and heterometallic halides are elucidated by detailed structural and spectral comparisons. Moreover, the compound [(Tp)3CuBr]SbBr6 shows significant potential for low-temperature optical temperature sensing applications based on the fluorescence intensity ratio of its dual emissions, with absolute sensitivity (Sa) and relative sensitivity (Sr) values of 0.078 K-1 and 5.38% K-1, respectively. This study not only provides a new strategy for developing heterometallic halide photoluminescence materials, but also offers new ideas for a better understanding of the photophysical mechanism of 0-D heterometallic halides.