Vandana Tiwari, Marcus Gallagher-Jones, Hyein Hwang, Hong-Guang Duan, Angus I. Kirkland, R. J. Dwayne Miller* and Ajay Jha*,
{"title":"晶格应力调节光诱导的扬-泰勒畸变动力学","authors":"Vandana Tiwari, Marcus Gallagher-Jones, Hyein Hwang, Hong-Guang Duan, Angus I. Kirkland, R. J. Dwayne Miller* and Ajay Jha*, ","doi":"10.1021/acsphyschemau.4c0004710.1021/acsphyschemau.4c00047","DOIUrl":null,"url":null,"abstract":"<p >Efficient photoredox chemical transformations are essential to the development of novel, cost-effective, and environmentally friendly synthetic methodologies. The concept of the entatic state in bioinorganic catalysis proposes that a preorganized structural configuration can reduce the energy barriers associated with chemical reactions. This concept provides one of the guiding principles to enhance catalytic efficiency by maintaining high-energy conformations close to the reaction’s transition state. Copper(I)-based photocatalysts, recognized for their low toxicity and highly negative oxidation potentials, are of particular interest in entasis studies. In this study, we explore the impact of entasis caused by stress induced by the surrounding lattice on the excited state dynamics of a prototypical copper(I)-based photocatalyst in a single crystal form. Using femtosecond broadband transient absorption spectroscopy, we show that triplet state formation from the entactic state is faster (∼3.9 ps) in crystals compared with solution (∼11.3 ps). The observed faster intersystem crossing in crystals hints toward the possible existence of distorted square planar geometry with higher spin–orbit coupling at the minima of the S<sub>1</sub> state. We further discuss the influence of entasis on vibrationally coherent photoinduced Jahn–Teller distortions. Our findings reveal the photophysical properties of the copper complex under lattice-induced stress, which can be extended to enhance the broader applicability of the entatic state concept in other transition metal systems. Understanding how environmental stress-induced geometric constraints within crystal lattices affect photochemical behavior opens avenues for designing more efficient photocatalytic systems based on transition metals, potentially enhancing their applicability to sustainable chemical synthesis.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 6","pages":"660–668 660–668"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00047","citationCount":"0","resultStr":"{\"title\":\"Crystal Lattice-Induced Stress modulates Photoinduced Jahn–Teller Distortion Dynamics\",\"authors\":\"Vandana Tiwari, Marcus Gallagher-Jones, Hyein Hwang, Hong-Guang Duan, Angus I. Kirkland, R. J. Dwayne Miller* and Ajay Jha*, \",\"doi\":\"10.1021/acsphyschemau.4c0004710.1021/acsphyschemau.4c00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Efficient photoredox chemical transformations are essential to the development of novel, cost-effective, and environmentally friendly synthetic methodologies. The concept of the entatic state in bioinorganic catalysis proposes that a preorganized structural configuration can reduce the energy barriers associated with chemical reactions. This concept provides one of the guiding principles to enhance catalytic efficiency by maintaining high-energy conformations close to the reaction’s transition state. Copper(I)-based photocatalysts, recognized for their low toxicity and highly negative oxidation potentials, are of particular interest in entasis studies. In this study, we explore the impact of entasis caused by stress induced by the surrounding lattice on the excited state dynamics of a prototypical copper(I)-based photocatalyst in a single crystal form. Using femtosecond broadband transient absorption spectroscopy, we show that triplet state formation from the entactic state is faster (∼3.9 ps) in crystals compared with solution (∼11.3 ps). The observed faster intersystem crossing in crystals hints toward the possible existence of distorted square planar geometry with higher spin–orbit coupling at the minima of the S<sub>1</sub> state. We further discuss the influence of entasis on vibrationally coherent photoinduced Jahn–Teller distortions. Our findings reveal the photophysical properties of the copper complex under lattice-induced stress, which can be extended to enhance the broader applicability of the entatic state concept in other transition metal systems. Understanding how environmental stress-induced geometric constraints within crystal lattices affect photochemical behavior opens avenues for designing more efficient photocatalytic systems based on transition metals, potentially enhancing their applicability to sustainable chemical synthesis.</p>\",\"PeriodicalId\":29796,\"journal\":{\"name\":\"ACS Physical Chemistry Au\",\"volume\":\"4 6\",\"pages\":\"660–668 660–668\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Physical Chemistry Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Efficient photoredox chemical transformations are essential to the development of novel, cost-effective, and environmentally friendly synthetic methodologies. The concept of the entatic state in bioinorganic catalysis proposes that a preorganized structural configuration can reduce the energy barriers associated with chemical reactions. This concept provides one of the guiding principles to enhance catalytic efficiency by maintaining high-energy conformations close to the reaction’s transition state. Copper(I)-based photocatalysts, recognized for their low toxicity and highly negative oxidation potentials, are of particular interest in entasis studies. In this study, we explore the impact of entasis caused by stress induced by the surrounding lattice on the excited state dynamics of a prototypical copper(I)-based photocatalyst in a single crystal form. Using femtosecond broadband transient absorption spectroscopy, we show that triplet state formation from the entactic state is faster (∼3.9 ps) in crystals compared with solution (∼11.3 ps). The observed faster intersystem crossing in crystals hints toward the possible existence of distorted square planar geometry with higher spin–orbit coupling at the minima of the S1 state. We further discuss the influence of entasis on vibrationally coherent photoinduced Jahn–Teller distortions. Our findings reveal the photophysical properties of the copper complex under lattice-induced stress, which can be extended to enhance the broader applicability of the entatic state concept in other transition metal systems. Understanding how environmental stress-induced geometric constraints within crystal lattices affect photochemical behavior opens avenues for designing more efficient photocatalytic systems based on transition metals, potentially enhancing their applicability to sustainable chemical synthesis.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis