Siyu Sun, Ying Wan, Zheng Li, Lumen Chao, Yuanyuan Bai, Qunhua Liu, Can Wang, Wen Liu and Peijun Ji
{"title":"用于 5-羟甲基糠醛†高效还原升级的橙皮衍生锆配位聚合物","authors":"Siyu Sun, Ying Wan, Zheng Li, Lumen Chao, Yuanyuan Bai, Qunhua Liu, Can Wang, Wen Liu and Peijun Ji","doi":"10.1039/D4NJ03426K","DOIUrl":null,"url":null,"abstract":"<p >Both the use of renewable natural sources to prepare catalytic materials and the Meerwein–Ponndorf–Verley (MPV) reduction of carbonyl compounds are very attractive topics in catalysis. Neohesperidin (NES) with rich oxygen-containing groups can bind to various metal ions. In this work, NES has been used as the ligand to coordinate Zr(<small>IV</small>) for the synthesis of a porous coordination polymer (Zr-NES). Various characterization studies demonstrated the formation of robust porous inorganic–organic frameworks and strong Lewis acid–base sites in Zr-NES. Due to the presence of coordinatively unsaturated Zr sites, Zr-NES had highly active Lewis acid sites, so it can efficiently catalyze the hydrogenation of 5-hydroxymethylfurfural (HMF) to prepare 2,5-bis-(hydroxymethyl)furan (BHMF). After 2 h at a mild temperature of 120 °C, a BHMF yield of 99.0% with turnover frequency (TOF) of 8.5 h<small><sup>−1</sup></small> could be obtained. This robust bifunctional acid–base Zr-NES was also demonstrated to be effective in one-step reductive etherification of 5-HMF to 5-[(1-methylethoxy)methyl]-2-furanmethanol (MEFA), a potential biomass-derived fuel additive, with 90% yield. Kinetic studies revealed that the activation energy for CTH of 5-HMF was 44.73 kJ mol<small><sup>−1</sup></small>, accounting for the high reaction rate. Due to the strong interactions between Zr<small><sup>4+</sup></small> and oxygen-containing groups, Zr-NES was highly stable and could be reused without a significant decline in activity.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 46","pages":" 19661-19673"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An orange peel-derived zirconium-coordination polymer for highly efficient reductive upgradation of 5-hydroxymethylfurfural†\",\"authors\":\"Siyu Sun, Ying Wan, Zheng Li, Lumen Chao, Yuanyuan Bai, Qunhua Liu, Can Wang, Wen Liu and Peijun Ji\",\"doi\":\"10.1039/D4NJ03426K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Both the use of renewable natural sources to prepare catalytic materials and the Meerwein–Ponndorf–Verley (MPV) reduction of carbonyl compounds are very attractive topics in catalysis. Neohesperidin (NES) with rich oxygen-containing groups can bind to various metal ions. In this work, NES has been used as the ligand to coordinate Zr(<small>IV</small>) for the synthesis of a porous coordination polymer (Zr-NES). Various characterization studies demonstrated the formation of robust porous inorganic–organic frameworks and strong Lewis acid–base sites in Zr-NES. Due to the presence of coordinatively unsaturated Zr sites, Zr-NES had highly active Lewis acid sites, so it can efficiently catalyze the hydrogenation of 5-hydroxymethylfurfural (HMF) to prepare 2,5-bis-(hydroxymethyl)furan (BHMF). After 2 h at a mild temperature of 120 °C, a BHMF yield of 99.0% with turnover frequency (TOF) of 8.5 h<small><sup>−1</sup></small> could be obtained. This robust bifunctional acid–base Zr-NES was also demonstrated to be effective in one-step reductive etherification of 5-HMF to 5-[(1-methylethoxy)methyl]-2-furanmethanol (MEFA), a potential biomass-derived fuel additive, with 90% yield. Kinetic studies revealed that the activation energy for CTH of 5-HMF was 44.73 kJ mol<small><sup>−1</sup></small>, accounting for the high reaction rate. Due to the strong interactions between Zr<small><sup>4+</sup></small> and oxygen-containing groups, Zr-NES was highly stable and could be reused without a significant decline in activity.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 46\",\"pages\":\" 19661-19673\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj03426k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj03426k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An orange peel-derived zirconium-coordination polymer for highly efficient reductive upgradation of 5-hydroxymethylfurfural†
Both the use of renewable natural sources to prepare catalytic materials and the Meerwein–Ponndorf–Verley (MPV) reduction of carbonyl compounds are very attractive topics in catalysis. Neohesperidin (NES) with rich oxygen-containing groups can bind to various metal ions. In this work, NES has been used as the ligand to coordinate Zr(IV) for the synthesis of a porous coordination polymer (Zr-NES). Various characterization studies demonstrated the formation of robust porous inorganic–organic frameworks and strong Lewis acid–base sites in Zr-NES. Due to the presence of coordinatively unsaturated Zr sites, Zr-NES had highly active Lewis acid sites, so it can efficiently catalyze the hydrogenation of 5-hydroxymethylfurfural (HMF) to prepare 2,5-bis-(hydroxymethyl)furan (BHMF). After 2 h at a mild temperature of 120 °C, a BHMF yield of 99.0% with turnover frequency (TOF) of 8.5 h−1 could be obtained. This robust bifunctional acid–base Zr-NES was also demonstrated to be effective in one-step reductive etherification of 5-HMF to 5-[(1-methylethoxy)methyl]-2-furanmethanol (MEFA), a potential biomass-derived fuel additive, with 90% yield. Kinetic studies revealed that the activation energy for CTH of 5-HMF was 44.73 kJ mol−1, accounting for the high reaction rate. Due to the strong interactions between Zr4+ and oxygen-containing groups, Zr-NES was highly stable and could be reused without a significant decline in activity.