{"title":"具有细胞分离功能的同态组织类 P 系统","authors":"Yueguo Luo, Yuzhen Zhao, Wenqin Li, Ping Guo","doi":"10.1007/s00236-024-00470-y","DOIUrl":null,"url":null,"abstract":"<div><p>P systems are distributed, parallel computing models inspired by biology. Tissue-like P systems are an important variant of P systems, where the environment can provide objects for cells. Hence, the environment plays a critical role. Nevertheless, in actual biological tissues, there exists a peculiar biological phenomenon called “homeostasis”; that is, the internal organisms maintain stable, thereby reducing their dependence on external conditions (i.e., the environment). In this work, considering cell separation, we construct a novel variant to simulate the mechanism of biological homeostasis, called homeostasis tissue-like P systems with cell separation. In this variant, the number of object is finite, and certain substance changes occur inside the cells; moreover, an exponential workspace can be obtained with cell separation in feasible time. The computational power of this model is studied by simulating register machines, and the results show that the variant is computationally complete as number computing devices. Furthermore, to explore the computational efficiency of the model, we use the variant to solve a classic <span>\\(\\textbf{NP}\\)</span>-complete problem, the SAT problem, obtaining a uniform solution with a rule length of at most 3.</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":"62 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homeostasis tissue-like P systems with cell separation\",\"authors\":\"Yueguo Luo, Yuzhen Zhao, Wenqin Li, Ping Guo\",\"doi\":\"10.1007/s00236-024-00470-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>P systems are distributed, parallel computing models inspired by biology. Tissue-like P systems are an important variant of P systems, where the environment can provide objects for cells. Hence, the environment plays a critical role. Nevertheless, in actual biological tissues, there exists a peculiar biological phenomenon called “homeostasis”; that is, the internal organisms maintain stable, thereby reducing their dependence on external conditions (i.e., the environment). In this work, considering cell separation, we construct a novel variant to simulate the mechanism of biological homeostasis, called homeostasis tissue-like P systems with cell separation. In this variant, the number of object is finite, and certain substance changes occur inside the cells; moreover, an exponential workspace can be obtained with cell separation in feasible time. The computational power of this model is studied by simulating register machines, and the results show that the variant is computationally complete as number computing devices. Furthermore, to explore the computational efficiency of the model, we use the variant to solve a classic <span>\\\\(\\\\textbf{NP}\\\\)</span>-complete problem, the SAT problem, obtaining a uniform solution with a rule length of at most 3.</p></div>\",\"PeriodicalId\":7189,\"journal\":{\"name\":\"Acta Informatica\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00236-024-00470-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-024-00470-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
P 系统是受生物学启发的分布式并行计算模型。类组织 P 系统是 P 系统的一个重要变体,其中环境可以为细胞提供对象。因此,环境起着至关重要的作用。然而,在实际的生物组织中,存在一种奇特的生物现象,即 "稳态";也就是说,内部有机体保持稳定,从而减少对外部条件(即环境)的依赖。在这项工作中,考虑到细胞分离,我们构建了一种新的变体来模拟生物平衡机制,称为具有细胞分离的类平衡组织 P 系统。在这一变体中,物体的数量是有限的,细胞内会发生某些物质变化;此外,在可行的时间内,细胞分离可获得指数工作空间。我们通过模拟寄存器对该模型的计算能力进行了研究,结果表明,作为数字计算设备,该变量在计算上是完整的。此外,为了探索该模型的计算效率,我们用该变体求解了一个经典的(\textbf{NP}\)-完全问题--SAT问题,得到了规则长度最多为3的统一解。
Homeostasis tissue-like P systems with cell separation
P systems are distributed, parallel computing models inspired by biology. Tissue-like P systems are an important variant of P systems, where the environment can provide objects for cells. Hence, the environment plays a critical role. Nevertheless, in actual biological tissues, there exists a peculiar biological phenomenon called “homeostasis”; that is, the internal organisms maintain stable, thereby reducing their dependence on external conditions (i.e., the environment). In this work, considering cell separation, we construct a novel variant to simulate the mechanism of biological homeostasis, called homeostasis tissue-like P systems with cell separation. In this variant, the number of object is finite, and certain substance changes occur inside the cells; moreover, an exponential workspace can be obtained with cell separation in feasible time. The computational power of this model is studied by simulating register machines, and the results show that the variant is computationally complete as number computing devices. Furthermore, to explore the computational efficiency of the model, we use the variant to solve a classic \(\textbf{NP}\)-complete problem, the SAT problem, obtaining a uniform solution with a rule length of at most 3.
期刊介绍:
Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics.
Topics of interest include:
• semantics of programming languages
• models and modeling languages for concurrent, distributed, reactive and mobile systems
• models and modeling languages for timed, hybrid and probabilistic systems
• specification, program analysis and verification
• model checking and theorem proving
• modal, temporal, first- and higher-order logics, and their variants
• constraint logic, SAT/SMT-solving techniques
• theoretical aspects of databases, semi-structured data and finite model theory
• theoretical aspects of artificial intelligence, knowledge representation, description logic
• automata theory, formal languages, term and graph rewriting
• game-based models, synthesis
• type theory, typed calculi
• algebraic, coalgebraic and categorical methods
• formal aspects of performance, dependability and reliability analysis
• foundations of information and network security
• parallel, distributed and randomized algorithms
• design and analysis of algorithms
• foundations of network and communication protocols.