探索表面张力测量中的液滴振荡动力学

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Experiments in Fluids Pub Date : 2024-11-27 DOI:10.1007/s00348-024-03926-6
Kiana Fahimi, Lutz Mädler, Nils Ellendt
{"title":"探索表面张力测量中的液滴振荡动力学","authors":"Kiana Fahimi,&nbsp;Lutz Mädler,&nbsp;Nils Ellendt","doi":"10.1007/s00348-024-03926-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study builds upon prior research by exploring droplet oscillation dynamics for surface tension determination using a drop-on-demand high-temperature droplet generator. Computational fluid dynamics (CFD) simulations were conducted to analyse frequency shifts over time, comparing two different materials with consistent results. The findings suggest potential for developing correction factors for oscillations with larger initial deformations. Additionally, frequency shifts relative to evolving aspect ratios of droplets starting with higher initial deformations were compared. Corrective measures can be applied, particularly beneficial for short-term measurements based on image analysis with minimal overall frequency shift. Slight asymmetry in oscillation with increasing aspect ratio could be accredited to droplet cross-sectional geometry or energy availability for returning prolate droplets to a spherical state. Experimental results indicated minimal frequency shift within a measurement duration of up to 40 ms, affirming the adequacy of using a fitted sine function without a time-dependent frequency term for overall frequency determination. A dimensionless criterion can be used to filter out unsuitable droplets. A temperature-dependent surface tension trend for AlCu10 alloy consistent with literature findings is introduced.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 12","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03926-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring droplet oscillation dynamics in surface tension measurements\",\"authors\":\"Kiana Fahimi,&nbsp;Lutz Mädler,&nbsp;Nils Ellendt\",\"doi\":\"10.1007/s00348-024-03926-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study builds upon prior research by exploring droplet oscillation dynamics for surface tension determination using a drop-on-demand high-temperature droplet generator. Computational fluid dynamics (CFD) simulations were conducted to analyse frequency shifts over time, comparing two different materials with consistent results. The findings suggest potential for developing correction factors for oscillations with larger initial deformations. Additionally, frequency shifts relative to evolving aspect ratios of droplets starting with higher initial deformations were compared. Corrective measures can be applied, particularly beneficial for short-term measurements based on image analysis with minimal overall frequency shift. Slight asymmetry in oscillation with increasing aspect ratio could be accredited to droplet cross-sectional geometry or energy availability for returning prolate droplets to a spherical state. Experimental results indicated minimal frequency shift within a measurement duration of up to 40 ms, affirming the adequacy of using a fitted sine function without a time-dependent frequency term for overall frequency determination. A dimensionless criterion can be used to filter out unsuitable droplets. A temperature-dependent surface tension trend for AlCu10 alloy consistent with literature findings is introduced.</p></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"65 12\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00348-024-03926-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-024-03926-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03926-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究在先前研究的基础上,利用按需滴高温液滴发生器探索液滴振荡动力学,以确定表面张力。研究人员进行了计算流体动力学(CFD)模拟,以分析随时间变化的频率偏移,并对两种不同材料进行了比较,结果一致。研究结果表明,有可能为初始变形较大的振荡开发校正因子。此外,还比较了与初始变形较大的液滴的长宽比变化有关的频率偏移。可以采用校正措施,尤其有利于基于图像分析的短期测量,使整体频率偏移最小。随着长宽比的增加,振荡略有不对称,这可能与液滴横截面的几何形状有关,也可能与液滴的能量可用性有关,因为能量可用性可使凸形液滴恢复到球形状态。实验结果表明,在长达 40 毫秒的测量持续时间内,频率偏移极小,这证明使用拟合正弦函数而不使用随时间变化的频率项来确定总体频率是合适的。无量纲标准可用于过滤不合适的液滴。介绍了 AlCu10 合金随温度变化的表面张力趋势,与文献结论一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring droplet oscillation dynamics in surface tension measurements

This study builds upon prior research by exploring droplet oscillation dynamics for surface tension determination using a drop-on-demand high-temperature droplet generator. Computational fluid dynamics (CFD) simulations were conducted to analyse frequency shifts over time, comparing two different materials with consistent results. The findings suggest potential for developing correction factors for oscillations with larger initial deformations. Additionally, frequency shifts relative to evolving aspect ratios of droplets starting with higher initial deformations were compared. Corrective measures can be applied, particularly beneficial for short-term measurements based on image analysis with minimal overall frequency shift. Slight asymmetry in oscillation with increasing aspect ratio could be accredited to droplet cross-sectional geometry or energy availability for returning prolate droplets to a spherical state. Experimental results indicated minimal frequency shift within a measurement duration of up to 40 ms, affirming the adequacy of using a fitted sine function without a time-dependent frequency term for overall frequency determination. A dimensionless criterion can be used to filter out unsuitable droplets. A temperature-dependent surface tension trend for AlCu10 alloy consistent with literature findings is introduced.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
期刊最新文献
Comparison of displacement estimation techniques for background-oriented schlieren of high-speed compressible turbulent flows Plasma-based anti-/de-icing: an experimental study utilizing supercooled water droplet image velocimetry The effects of wall proximity on the turbulent flow field in a square duct structured with detached divergent ribs on one wall Experimental study on the mode switching of strong-amplitude tones in slat noise Variations in vortex structure with changes in swimming velocity during human underwater undulatory swimming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1