Angie Paola Santacruz-Salas, Maria Lúcia Pereira Antunes, Elidiane Cipriano Rangel, Cláudia Hitomi Watanabe, André Henrique Rosa
{"title":"等离子体工程甘蔗渣:从水溶液中高效去除汞的新策略。","authors":"Angie Paola Santacruz-Salas, Maria Lúcia Pereira Antunes, Elidiane Cipriano Rangel, Cláudia Hitomi Watanabe, André Henrique Rosa","doi":"10.1007/s11356-024-35585-9","DOIUrl":null,"url":null,"abstract":"<p><p>Metal ion adsorption using agro-industrial residues has shown promising results in remediating contaminated waters. However, adsorbent effectiveness relies on their properties, often necessitating processing for modification. Considering this, plasma treatment is effective in modifying material surfaces physically and chemically. This study investigated the modification of sugarcane bagasse (SB) using plasma treatment and evaluated its efficacy as a novel adsorbent for mercury removal from aqueous solutions. SB underwent low-temperature plasma treatment with sulfur hexafluoride (SF<sub>6</sub>) as the working gas, varying treatment times (2, 30, and 60 min), and fixed powers (80, 190, and 300 W) at 16 Pa pressure. Characterization via SEM/EDS, FTIR, XPS, and pHpzc revealed significant structural changes like increased in porosity and alteration in proportion atomic. Additionally, the successful incorporation of fluorine was confirmed in all treatment conditions, while sulfur was detected in only some samples. Amongst the tested conditions, the SB treated with 300 W for 60 min demonstrated the highest mercury removal efficiency, achieving an impressive 83.67% removal rate compared to untreated SB, which yielded only 57.95%. The adsorption mechanism exhibited both physical and chemical behavior, with chemisorption being the dominant process. The Freundlich model provided the best fit to the experimental data, with an R<sup>2</sup> value of 0.97. In conclusion, plasma treatment can be a promising alternative for improving the physical and chemical characteristics of SB adsorbents, thereby improving their efficiency in removing mercury from aqueous solutions.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma-engineered sugarcane bagasse: a novel strategy for efficient mercury removal from aqueous solutions.\",\"authors\":\"Angie Paola Santacruz-Salas, Maria Lúcia Pereira Antunes, Elidiane Cipriano Rangel, Cláudia Hitomi Watanabe, André Henrique Rosa\",\"doi\":\"10.1007/s11356-024-35585-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metal ion adsorption using agro-industrial residues has shown promising results in remediating contaminated waters. However, adsorbent effectiveness relies on their properties, often necessitating processing for modification. Considering this, plasma treatment is effective in modifying material surfaces physically and chemically. This study investigated the modification of sugarcane bagasse (SB) using plasma treatment and evaluated its efficacy as a novel adsorbent for mercury removal from aqueous solutions. SB underwent low-temperature plasma treatment with sulfur hexafluoride (SF<sub>6</sub>) as the working gas, varying treatment times (2, 30, and 60 min), and fixed powers (80, 190, and 300 W) at 16 Pa pressure. Characterization via SEM/EDS, FTIR, XPS, and pHpzc revealed significant structural changes like increased in porosity and alteration in proportion atomic. Additionally, the successful incorporation of fluorine was confirmed in all treatment conditions, while sulfur was detected in only some samples. Amongst the tested conditions, the SB treated with 300 W for 60 min demonstrated the highest mercury removal efficiency, achieving an impressive 83.67% removal rate compared to untreated SB, which yielded only 57.95%. The adsorption mechanism exhibited both physical and chemical behavior, with chemisorption being the dominant process. The Freundlich model provided the best fit to the experimental data, with an R<sup>2</sup> value of 0.97. In conclusion, plasma treatment can be a promising alternative for improving the physical and chemical characteristics of SB adsorbents, thereby improving their efficiency in removing mercury from aqueous solutions.</p>\",\"PeriodicalId\":545,\"journal\":{\"name\":\"Environmental Science and Pollution Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11356-024-35585-9\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35585-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Plasma-engineered sugarcane bagasse: a novel strategy for efficient mercury removal from aqueous solutions.
Metal ion adsorption using agro-industrial residues has shown promising results in remediating contaminated waters. However, adsorbent effectiveness relies on their properties, often necessitating processing for modification. Considering this, plasma treatment is effective in modifying material surfaces physically and chemically. This study investigated the modification of sugarcane bagasse (SB) using plasma treatment and evaluated its efficacy as a novel adsorbent for mercury removal from aqueous solutions. SB underwent low-temperature plasma treatment with sulfur hexafluoride (SF6) as the working gas, varying treatment times (2, 30, and 60 min), and fixed powers (80, 190, and 300 W) at 16 Pa pressure. Characterization via SEM/EDS, FTIR, XPS, and pHpzc revealed significant structural changes like increased in porosity and alteration in proportion atomic. Additionally, the successful incorporation of fluorine was confirmed in all treatment conditions, while sulfur was detected in only some samples. Amongst the tested conditions, the SB treated with 300 W for 60 min demonstrated the highest mercury removal efficiency, achieving an impressive 83.67% removal rate compared to untreated SB, which yielded only 57.95%. The adsorption mechanism exhibited both physical and chemical behavior, with chemisorption being the dominant process. The Freundlich model provided the best fit to the experimental data, with an R2 value of 0.97. In conclusion, plasma treatment can be a promising alternative for improving the physical and chemical characteristics of SB adsorbents, thereby improving their efficiency in removing mercury from aqueous solutions.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.