双(氧)氢氧化物催化剂协同促进了 BiVO4 光阳极的太阳能水分离。

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemistry - An Asian Journal Pub Date : 2024-11-26 DOI:10.1002/asia.202401331
Youyi Su, Yian Du, Ruyu Yan, Haohua Wang, Ming Zhang, Xiangui Pang, Pai Peng, Pingping Yang, Xinxin Lu, Jiale Xie
{"title":"双(氧)氢氧化物催化剂协同促进了 BiVO4 光阳极的太阳能水分离。","authors":"Youyi Su, Yian Du, Ruyu Yan, Haohua Wang, Ming Zhang, Xiangui Pang, Pai Peng, Pingping Yang, Xinxin Lu, Jiale Xie","doi":"10.1002/asia.202401331","DOIUrl":null,"url":null,"abstract":"<p><p>Bismuth oxide (BiVO4) is considered one of the most promising semiconductors for photoelectrochemical (PEC) water splitting due to its highly theoretical photocurrent of 7.5 mA cm-2. However, its sluggish kinetics and severe photocorrosion still hinder the real application of a large-area BiVO4 photoanode. Herein, a room-temperature immersion method has been used to fabricate a dual cocatalyst-coated BiVO4 film, namely the BiVO4/FeOOH/Co(OH)2 photoanode. This composite photoanode delivers a photocurrent density of 2.56 mA cm-2, which is 2.7 times that of pure BiVO4. After a long-term testing of 10 h, its retention rate of photocurrent reaches 71.63%, which is 4.6 times that of BiVO4. The kinetic studies illustrate that dual cocatalyst can significantly lower the charge transfer resistance, improve the charge injection efficiency, and reduce the Tafel slope. Specifically, FeOOH plays a role in transporting photogenerated holes, while Co(OH)2 facilitates water oxidation reactions. In addition, the dual cocatalyst coating can slow down vanadium ion dissolution and improve PEC stability. This immersion method can easily be applied to large-area photoelectrodes.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401331"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual (oxy)hydroxide cocatalyst synergistically boosts solar water splitting of BiVO4 photoanode.\",\"authors\":\"Youyi Su, Yian Du, Ruyu Yan, Haohua Wang, Ming Zhang, Xiangui Pang, Pai Peng, Pingping Yang, Xinxin Lu, Jiale Xie\",\"doi\":\"10.1002/asia.202401331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bismuth oxide (BiVO4) is considered one of the most promising semiconductors for photoelectrochemical (PEC) water splitting due to its highly theoretical photocurrent of 7.5 mA cm-2. However, its sluggish kinetics and severe photocorrosion still hinder the real application of a large-area BiVO4 photoanode. Herein, a room-temperature immersion method has been used to fabricate a dual cocatalyst-coated BiVO4 film, namely the BiVO4/FeOOH/Co(OH)2 photoanode. This composite photoanode delivers a photocurrent density of 2.56 mA cm-2, which is 2.7 times that of pure BiVO4. After a long-term testing of 10 h, its retention rate of photocurrent reaches 71.63%, which is 4.6 times that of BiVO4. The kinetic studies illustrate that dual cocatalyst can significantly lower the charge transfer resistance, improve the charge injection efficiency, and reduce the Tafel slope. Specifically, FeOOH plays a role in transporting photogenerated holes, while Co(OH)2 facilitates water oxidation reactions. In addition, the dual cocatalyst coating can slow down vanadium ion dissolution and improve PEC stability. This immersion method can easily be applied to large-area photoelectrodes.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\" \",\"pages\":\"e202401331\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202401331\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401331","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧化铋(BiVO4)的理论光电流高达 7.5 mA cm-2,因此被认为是最有前途的光电化学(PEC)水分裂半导体之一。然而,其缓慢的动力学和严重的光腐蚀仍然阻碍着大面积 BiVO4 光阳极的实际应用。在此,我们采用室温浸泡法制备了一种双催化剂涂层 BiVO4 薄膜,即 BiVO4/FeOOH/Co(OH)2 光阳极。这种复合光阳极的光电流密度为 2.56 mA cm-2,是纯 BiVO4 的 2.7 倍。经过 10 小时的长期测试,其光电流保持率达到 71.63%,是 BiVO4 的 4.6 倍。动力学研究表明,双催化剂能显著降低电荷转移电阻,提高电荷注入效率,降低塔菲尔斜率。具体来说,FeOOH 在传输光生空穴方面发挥作用,而 Co(OH)2 则促进水氧化反应。此外,双催化剂涂层还能减缓钒离子的溶解,提高 PEC 的稳定性。这种浸泡方法很容易应用于大面积光电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual (oxy)hydroxide cocatalyst synergistically boosts solar water splitting of BiVO4 photoanode.

Bismuth oxide (BiVO4) is considered one of the most promising semiconductors for photoelectrochemical (PEC) water splitting due to its highly theoretical photocurrent of 7.5 mA cm-2. However, its sluggish kinetics and severe photocorrosion still hinder the real application of a large-area BiVO4 photoanode. Herein, a room-temperature immersion method has been used to fabricate a dual cocatalyst-coated BiVO4 film, namely the BiVO4/FeOOH/Co(OH)2 photoanode. This composite photoanode delivers a photocurrent density of 2.56 mA cm-2, which is 2.7 times that of pure BiVO4. After a long-term testing of 10 h, its retention rate of photocurrent reaches 71.63%, which is 4.6 times that of BiVO4. The kinetic studies illustrate that dual cocatalyst can significantly lower the charge transfer resistance, improve the charge injection efficiency, and reduce the Tafel slope. Specifically, FeOOH plays a role in transporting photogenerated holes, while Co(OH)2 facilitates water oxidation reactions. In addition, the dual cocatalyst coating can slow down vanadium ion dissolution and improve PEC stability. This immersion method can easily be applied to large-area photoelectrodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
期刊最新文献
A Facile and Efficient Synthesis of BODIPY-Based Fluorescent Probes for Selective Detection of Hydrazine. Photoresponsive Luminescent Silica Nanoparticles as Additive for 3D Printing and Electrospinning. Quinoline Endoperoxides for Mitochondria Targeted Singlet Oxygen Delivery. Surface reconstructed Ni0.95Pt0.05/Si photoelectrodes for bias-free hydrogen evolution coupled with 5-hydroxymethylfurfural oxidation. AIE Active Polymeric Fluorescent Nanoaggregates from Glycogen for Sensitive Detection of Tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1