发电厂和废水处理同时吸收二氧化碳。

4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Advances in biochemical engineering/biotechnology Pub Date : 2024-11-26 DOI:10.1007/10_2024_260
Erik Dahlquist, Sebastian Schwede, Eva Thorin
{"title":"发电厂和废水处理同时吸收二氧化碳。","authors":"Erik Dahlquist, Sebastian Schwede, Eva Thorin","doi":"10.1007/10_2024_260","DOIUrl":null,"url":null,"abstract":"<p><p>There is a demand to remove CO2 from thermal plants to abate global warming. At the same time authorities demand treating wastewater to remove nitrogen and phosphorus and also to produce food. By combining algae farming at a power plant and using nutrients from the wastewater, actions to meet all these demands can be combined to a win-win situation. In this paper we make estimates what the dimensions and design criteria there would be for such an integrated system. The size of the algae farm will be significant. If placed in the sea, this may be feasible, but then storms must be considered. If we place in lakes, it is more competition for other uses that causes a problem. Combining with also greenhouses may be a possible solution. The biomass produced can be used directly as food or be processed by, e.g., fermentation to produce chemicals and methane (biogas).</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous CO2 Absorption from a Power Plant and Wastewater Treatment.\",\"authors\":\"Erik Dahlquist, Sebastian Schwede, Eva Thorin\",\"doi\":\"10.1007/10_2024_260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a demand to remove CO2 from thermal plants to abate global warming. At the same time authorities demand treating wastewater to remove nitrogen and phosphorus and also to produce food. By combining algae farming at a power plant and using nutrients from the wastewater, actions to meet all these demands can be combined to a win-win situation. In this paper we make estimates what the dimensions and design criteria there would be for such an integrated system. The size of the algae farm will be significant. If placed in the sea, this may be feasible, but then storms must be considered. If we place in lakes, it is more competition for other uses that causes a problem. Combining with also greenhouses may be a possible solution. The biomass produced can be used directly as food or be processed by, e.g., fermentation to produce chemicals and methane (biogas).</p>\",\"PeriodicalId\":7198,\"journal\":{\"name\":\"Advances in biochemical engineering/biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in biochemical engineering/biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/10_2024_260\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2024_260","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

人们要求从热电厂中去除二氧化碳,以减缓全球变暖。同时,政府要求处理废水以去除氮和磷,并生产食品。通过将发电厂的藻类养殖与利用废水中的营养物质结合起来,可以满足所有这些需求,实现双赢。在本文中,我们对这种综合系统的规模和设计标准进行了估算。藻类养殖场的规模将十分巨大。如果放在海中,也许可行,但必须考虑到风暴。如果放在湖泊中,则会与其他用途形成更多竞争,从而造成问题。与温室相结合可能是一个可行的解决方案。产生的生物质可以直接用作食物,也可以通过发酵等方式进行处理,产生化学品和甲烷(沼气)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous CO2 Absorption from a Power Plant and Wastewater Treatment.

There is a demand to remove CO2 from thermal plants to abate global warming. At the same time authorities demand treating wastewater to remove nitrogen and phosphorus and also to produce food. By combining algae farming at a power plant and using nutrients from the wastewater, actions to meet all these demands can be combined to a win-win situation. In this paper we make estimates what the dimensions and design criteria there would be for such an integrated system. The size of the algae farm will be significant. If placed in the sea, this may be feasible, but then storms must be considered. If we place in lakes, it is more competition for other uses that causes a problem. Combining with also greenhouses may be a possible solution. The biomass produced can be used directly as food or be processed by, e.g., fermentation to produce chemicals and methane (biogas).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in biochemical engineering/biotechnology
Advances in biochemical engineering/biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.70
自引率
0.00%
发文量
29
期刊介绍: Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.
期刊最新文献
Microbial Electrochemical Technologies: Sustainable Solutions for Addressing Environmental Challenges. Agricultural Wastes to Value-Added Products: Economic and Environmental Perspectives for Waste Conversion. Production of Novel Energy Gases in Bioprocesses Using Undefined Mixed Cultures. Food and Forest Industry Waste Reuse Using Mixed Microflora. Introduction to the Use of Microbial Communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1