Aydin I Herik, Sarthak Sinha, Rohit Arora, Caleb Small, Antoine Dufour, Jeff Biernaskie, Eduardo R Cobo, Derek M McKay
{"title":"人类结肠上皮细胞的硅学综合 scRNA 分析显示出四种簇细胞亚型。","authors":"Aydin I Herik, Sarthak Sinha, Rohit Arora, Caleb Small, Antoine Dufour, Jeff Biernaskie, Eduardo R Cobo, Derek M McKay","doi":"10.1152/ajpgi.00182.2024","DOIUrl":null,"url":null,"abstract":"<p><p>This study integrated and analyzed human single-cell RNA sequencing data from four publicly available datasets to enhance cellular resolution, unveiling a complex landscape of tuft cell heterogeneity within the human colon. Four tuft subtypes (TC1-TC4) emerged, as defined by unique gene expression profiles, indicating potentially novel biological functions. Tuft cell 1 (TC1) was characterized by an antimicrobial peptide signature; TC2 had an increased transcription machinery gene expression profile consistent with a progenitor-like cell; TC3 expressed genes related to ganglion (neuronal) development; and TC4 expressed genes related to tight junctions. Our analysis of subtype-specific gene expression and pathway enrichment showed variances in tuft cell subtypes between healthy individuals and those with inflammatory bowel disease (IBD). The frequency of TC1 and TC2 differed between healthy controls and IBD. Relative to healthy controls, TC1 and TC2 in IBD tissue showed an upregulation of gene expression, favoring increased metabolism and immune function. These findings provide foundational knowledge about the complexity of the human colon tuft cell population and hint at their potential contributions to gut health. They provide a basis for future studies to explore the specific roles these cells may play in gut function during homeostasis and disease. We demonstrate the value of in silico approaches for hypothesis generation in relation to the putative functions of low-frequency gut cells for subsequent physiological analyses.<b>NEW & NOTEWORTHY</b> This study reveals the nuanced and novel landscape of human colonic tuft cells through integrative scRNA-seq analysis. Four distinct tuft cell subtypes were identified, varying markedly between healthy and individuals with IBD. We uncovered human colonic tuft cell subtypes with unexpected antimicrobial and progenitor-like gene expression signatures. These insights into tuft cell diversity offer new avenues for understanding gut health and disease pathophysiology.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G96-G109"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico integrative scRNA analysis of human colonic epithelium indicates four tuft cell subtypes.\",\"authors\":\"Aydin I Herik, Sarthak Sinha, Rohit Arora, Caleb Small, Antoine Dufour, Jeff Biernaskie, Eduardo R Cobo, Derek M McKay\",\"doi\":\"10.1152/ajpgi.00182.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study integrated and analyzed human single-cell RNA sequencing data from four publicly available datasets to enhance cellular resolution, unveiling a complex landscape of tuft cell heterogeneity within the human colon. Four tuft subtypes (TC1-TC4) emerged, as defined by unique gene expression profiles, indicating potentially novel biological functions. Tuft cell 1 (TC1) was characterized by an antimicrobial peptide signature; TC2 had an increased transcription machinery gene expression profile consistent with a progenitor-like cell; TC3 expressed genes related to ganglion (neuronal) development; and TC4 expressed genes related to tight junctions. Our analysis of subtype-specific gene expression and pathway enrichment showed variances in tuft cell subtypes between healthy individuals and those with inflammatory bowel disease (IBD). The frequency of TC1 and TC2 differed between healthy controls and IBD. Relative to healthy controls, TC1 and TC2 in IBD tissue showed an upregulation of gene expression, favoring increased metabolism and immune function. These findings provide foundational knowledge about the complexity of the human colon tuft cell population and hint at their potential contributions to gut health. They provide a basis for future studies to explore the specific roles these cells may play in gut function during homeostasis and disease. We demonstrate the value of in silico approaches for hypothesis generation in relation to the putative functions of low-frequency gut cells for subsequent physiological analyses.<b>NEW & NOTEWORTHY</b> This study reveals the nuanced and novel landscape of human colonic tuft cells through integrative scRNA-seq analysis. Four distinct tuft cell subtypes were identified, varying markedly between healthy and individuals with IBD. We uncovered human colonic tuft cell subtypes with unexpected antimicrobial and progenitor-like gene expression signatures. These insights into tuft cell diversity offer new avenues for understanding gut health and disease pathophysiology.</p>\",\"PeriodicalId\":7725,\"journal\":{\"name\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"volume\":\" \",\"pages\":\"G96-G109\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpgi.00182.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00182.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
In silico integrative scRNA analysis of human colonic epithelium indicates four tuft cell subtypes.
This study integrated and analyzed human single-cell RNA sequencing data from four publicly available datasets to enhance cellular resolution, unveiling a complex landscape of tuft cell heterogeneity within the human colon. Four tuft subtypes (TC1-TC4) emerged, as defined by unique gene expression profiles, indicating potentially novel biological functions. Tuft cell 1 (TC1) was characterized by an antimicrobial peptide signature; TC2 had an increased transcription machinery gene expression profile consistent with a progenitor-like cell; TC3 expressed genes related to ganglion (neuronal) development; and TC4 expressed genes related to tight junctions. Our analysis of subtype-specific gene expression and pathway enrichment showed variances in tuft cell subtypes between healthy individuals and those with inflammatory bowel disease (IBD). The frequency of TC1 and TC2 differed between healthy controls and IBD. Relative to healthy controls, TC1 and TC2 in IBD tissue showed an upregulation of gene expression, favoring increased metabolism and immune function. These findings provide foundational knowledge about the complexity of the human colon tuft cell population and hint at their potential contributions to gut health. They provide a basis for future studies to explore the specific roles these cells may play in gut function during homeostasis and disease. We demonstrate the value of in silico approaches for hypothesis generation in relation to the putative functions of low-frequency gut cells for subsequent physiological analyses.NEW & NOTEWORTHY This study reveals the nuanced and novel landscape of human colonic tuft cells through integrative scRNA-seq analysis. Four distinct tuft cell subtypes were identified, varying markedly between healthy and individuals with IBD. We uncovered human colonic tuft cell subtypes with unexpected antimicrobial and progenitor-like gene expression signatures. These insights into tuft cell diversity offer new avenues for understanding gut health and disease pathophysiology.
期刊介绍:
The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.