{"title":"识别针对胶质瘤治疗的伽连蛋白-3 结合蛋白 (LGALS3BP) 的潜在抑制剂。","authors":"Kirti Chauhan, Viswanathan Vijayan, Pradeep Pant, Sujata Sharma, Md Imtaiyaz Hassan, Nirmal Kumar Ganguly, Pradeep Sharma, Rashmi Rana","doi":"10.1080/07391102.2024.2431185","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma is one of the most lethal types of Gliomas, and its treatment greatly depends on the stage of its detection. Galactin-3-binding protein (LGALS3BP) serves as a novel circulatory biomarker for detecting glioma at an early stage. This protein is also responsible for metastasis, proliferative signaling, angiogenesis, and immune system evasion in the case of brain tumors. Inhibition of LGALS3BP can help in the reduction of metastasis and progression of the disease. Currently, no effective drug is available that can completely treat glioma. In this study, we have virtually screened the National Cancer Institute (NCI) drug databank to discover potential inhibitors of LGALS3BP. Based on the binding free energy calculations using MMPBSA, three compounds, 627861 (-16.69 kcal/mol), 329090 (-13.66 kcal/mol), and 627855 (-10.01 kcal/mol), were selected as potent inhibitors. 200 ns MD simulation studies further complemented this study. Finally, we recommend three molecules, 627861, 329090, and 627855, can be potential inhibitors of LGAL3SBP. The structural scaffolds of these molecules can also lead to the optimization of better inhibitors of LGALS3BP and be implicated in the therapeutic management of glioma after desired experimental validations.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-13"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying potential inhibitors against galectin-3-binding protein (LGALS3BP) for therapeutic targeting of glioma.\",\"authors\":\"Kirti Chauhan, Viswanathan Vijayan, Pradeep Pant, Sujata Sharma, Md Imtaiyaz Hassan, Nirmal Kumar Ganguly, Pradeep Sharma, Rashmi Rana\",\"doi\":\"10.1080/07391102.2024.2431185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma is one of the most lethal types of Gliomas, and its treatment greatly depends on the stage of its detection. Galactin-3-binding protein (LGALS3BP) serves as a novel circulatory biomarker for detecting glioma at an early stage. This protein is also responsible for metastasis, proliferative signaling, angiogenesis, and immune system evasion in the case of brain tumors. Inhibition of LGALS3BP can help in the reduction of metastasis and progression of the disease. Currently, no effective drug is available that can completely treat glioma. In this study, we have virtually screened the National Cancer Institute (NCI) drug databank to discover potential inhibitors of LGALS3BP. Based on the binding free energy calculations using MMPBSA, three compounds, 627861 (-16.69 kcal/mol), 329090 (-13.66 kcal/mol), and 627855 (-10.01 kcal/mol), were selected as potent inhibitors. 200 ns MD simulation studies further complemented this study. Finally, we recommend three molecules, 627861, 329090, and 627855, can be potential inhibitors of LGAL3SBP. The structural scaffolds of these molecules can also lead to the optimization of better inhibitors of LGALS3BP and be implicated in the therapeutic management of glioma after desired experimental validations.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2431185\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2431185","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identifying potential inhibitors against galectin-3-binding protein (LGALS3BP) for therapeutic targeting of glioma.
Glioblastoma is one of the most lethal types of Gliomas, and its treatment greatly depends on the stage of its detection. Galactin-3-binding protein (LGALS3BP) serves as a novel circulatory biomarker for detecting glioma at an early stage. This protein is also responsible for metastasis, proliferative signaling, angiogenesis, and immune system evasion in the case of brain tumors. Inhibition of LGALS3BP can help in the reduction of metastasis and progression of the disease. Currently, no effective drug is available that can completely treat glioma. In this study, we have virtually screened the National Cancer Institute (NCI) drug databank to discover potential inhibitors of LGALS3BP. Based on the binding free energy calculations using MMPBSA, three compounds, 627861 (-16.69 kcal/mol), 329090 (-13.66 kcal/mol), and 627855 (-10.01 kcal/mol), were selected as potent inhibitors. 200 ns MD simulation studies further complemented this study. Finally, we recommend three molecules, 627861, 329090, and 627855, can be potential inhibitors of LGAL3SBP. The structural scaffolds of these molecules can also lead to the optimization of better inhibitors of LGALS3BP and be implicated in the therapeutic management of glioma after desired experimental validations.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.