调查元古宙种系基因中的激活性致癌突变变异。

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Evolution Pub Date : 2024-11-26 DOI:10.1007/s00239-024-10218-4
Karl E Krueger
{"title":"调查元古宙种系基因中的激活性致癌突变变异。","authors":"Karl E Krueger","doi":"10.1007/s00239-024-10218-4","DOIUrl":null,"url":null,"abstract":"<p><p>Most cancers present with mutations or amplifications in distinctive tumor promoter genes that activate principal cell-signaling cascades promoting cell proliferation, dedifferentiation, cell survival, and replicative immortality. Somatic mutations found in this these driver proto-oncogenes invariably result in constitutive activation of the encoded protein. A salient feature of the activating mutations observed throughout many thousands of clinical tumor specimens reveals these driver missense mutations are recurrent and restricted to just one or very few codons of the entire gene, suggesting they have been positively selected during the course of tumor development. The purpose of this study is to investigate whether these characteristic oncogenic driver mutations are observed in the germline genes of any metazoan species. Six well-known tumor promoter genes were chosen for this survey including BRAF, KRAS, JAK2, PIK3CA, EGFR, and IDH1/2. The sites of all driver mutations were found to occur in highly conserved regions of each gene comparing protein sequences throughout diverse phyla of metazoan species. None of the oncogenic missense mutations were found in germlines of any species of current genome and protein databases. Despite many tumors readily selecting these somatic mutations, the conclusion drawn from this study is that these variants are negatively rejected if encountered as a germline mutation. While cancer expansion ensues from dysregulated growth elicited by these mutations, this effect is likely detrimental to embryonic development and/or survival of multicellular organisms. Although all oncogenic mutations considered here are gain-of-function where five of the six increase activity of the encoded proteins, clonal advancement promotes tumor growth by these genomic changes without conferring selection advantages benefiting the organism or species.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Survey for Activating Oncogenic Mutation Variants in Metazoan Germline Genes.\",\"authors\":\"Karl E Krueger\",\"doi\":\"10.1007/s00239-024-10218-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most cancers present with mutations or amplifications in distinctive tumor promoter genes that activate principal cell-signaling cascades promoting cell proliferation, dedifferentiation, cell survival, and replicative immortality. Somatic mutations found in this these driver proto-oncogenes invariably result in constitutive activation of the encoded protein. A salient feature of the activating mutations observed throughout many thousands of clinical tumor specimens reveals these driver missense mutations are recurrent and restricted to just one or very few codons of the entire gene, suggesting they have been positively selected during the course of tumor development. The purpose of this study is to investigate whether these characteristic oncogenic driver mutations are observed in the germline genes of any metazoan species. Six well-known tumor promoter genes were chosen for this survey including BRAF, KRAS, JAK2, PIK3CA, EGFR, and IDH1/2. The sites of all driver mutations were found to occur in highly conserved regions of each gene comparing protein sequences throughout diverse phyla of metazoan species. None of the oncogenic missense mutations were found in germlines of any species of current genome and protein databases. Despite many tumors readily selecting these somatic mutations, the conclusion drawn from this study is that these variants are negatively rejected if encountered as a germline mutation. While cancer expansion ensues from dysregulated growth elicited by these mutations, this effect is likely detrimental to embryonic development and/or survival of multicellular organisms. Although all oncogenic mutations considered here are gain-of-function where five of the six increase activity of the encoded proteins, clonal advancement promotes tumor growth by these genomic changes without conferring selection advantages benefiting the organism or species.</p>\",\"PeriodicalId\":16366,\"journal\":{\"name\":\"Journal of Molecular Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00239-024-10218-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-024-10218-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大多数癌症的独特肿瘤启动子基因都会发生突变或扩增,从而激活主要的细胞信号级联,促进细胞增殖、去分化、细胞存活和复制永生。在这些驱动原癌基因中发现的体细胞突变总是会导致编码蛋白的持续激活。在数以千计的临床肿瘤标本中观察到的激活突变的一个显著特点是,这些驱动错义突变是复发性的,而且仅限于整个基因中的一个或极少数密码子,这表明它们是在肿瘤发展过程中被积极选择的。本研究的目的是调查是否在任何类人动物的种系基因中观察到这些特征性的致癌驱动突变。本研究选择了六个众所周知的肿瘤启动子基因,包括 BRAF、KRAS、JAK2、PIK3CA、EGFR 和 IDH1/2。通过比较不同类群的元动物蛋白质序列,发现所有驱动基因突变的位点都发生在每个基因的高度保守区域。在目前的基因组和蛋白质数据库中,没有在任何物种的种系中发现致癌错义突变。尽管许多肿瘤很容易选择这些体细胞突变,但本研究得出的结论是,如果这些变异作为种系突变出现,就会被否定。虽然这些突变引起的生长失调会导致癌症扩大,但这种效应很可能不利于胚胎发育和/或多细胞生物的生存。虽然本文考虑的所有致癌突变都是功能增益突变,其中六种突变中有五种会增加编码蛋白的活性,但克隆突变会通过这些基因组变化促进肿瘤生长,而不会带来有利于生物体或物种的选择优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Survey for Activating Oncogenic Mutation Variants in Metazoan Germline Genes.

Most cancers present with mutations or amplifications in distinctive tumor promoter genes that activate principal cell-signaling cascades promoting cell proliferation, dedifferentiation, cell survival, and replicative immortality. Somatic mutations found in this these driver proto-oncogenes invariably result in constitutive activation of the encoded protein. A salient feature of the activating mutations observed throughout many thousands of clinical tumor specimens reveals these driver missense mutations are recurrent and restricted to just one or very few codons of the entire gene, suggesting they have been positively selected during the course of tumor development. The purpose of this study is to investigate whether these characteristic oncogenic driver mutations are observed in the germline genes of any metazoan species. Six well-known tumor promoter genes were chosen for this survey including BRAF, KRAS, JAK2, PIK3CA, EGFR, and IDH1/2. The sites of all driver mutations were found to occur in highly conserved regions of each gene comparing protein sequences throughout diverse phyla of metazoan species. None of the oncogenic missense mutations were found in germlines of any species of current genome and protein databases. Despite many tumors readily selecting these somatic mutations, the conclusion drawn from this study is that these variants are negatively rejected if encountered as a germline mutation. While cancer expansion ensues from dysregulated growth elicited by these mutations, this effect is likely detrimental to embryonic development and/or survival of multicellular organisms. Although all oncogenic mutations considered here are gain-of-function where five of the six increase activity of the encoded proteins, clonal advancement promotes tumor growth by these genomic changes without conferring selection advantages benefiting the organism or species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
期刊最新文献
Survey for Activating Oncogenic Mutation Variants in Metazoan Germline Genes. A Comparative Genomics Approach to Understanding the Evolution of Olfaction in Cetaceans. Stochastic Epigenetic Modification and Evolution of Sex Determination in Vertebrates. Cryptic Diversity in Scorpaenodes xyris (Jordan & Gilbert 1882) (Scorpaeniformes: Scorpaenidae) Throughout the Tropical Eastern Pacific. Models of Fluctuating Selection Between Generations: A Solution for the Theoretical Inconsistency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1