{"title":"图像分析揭示了形成蘑菇的真菌 Schizophyllum commune 生长过程中的表型差异。","authors":"Hiromi Matsumae, Megumi Sudo, Tadashi Imanishi, Tsuyoshi Hosoya","doi":"10.1111/gtc.13181","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p><i>Schizophyllum commune</i>, a common wood-decay mushroom known for its extremely high genetic variation and as a rare cause of human respiratory diseases, could be a promising model fungus contributing to both biology and medicine. To better understand its phenotypic variation, we developed an image analysis system that quantifies morphological and physiological traits of mycelial colonies in Petri dishes. This study evaluated growth of six wild and one clinical isolates of Japanese <i>S. commune</i>, subjected to different temperatures and glucose concentrations, including a condition mimicking the human respiratory environment. Our analysis revealed that combinations of two growth indices, area and whiteness, and profiling by clustering algorithms highlighted strain-specific responses. For example, the clinical isolate was the whitest under the respiratory-like condition. We also found that the growth rate was strongly determined by glucose concentration, while the effects of temperature on growth varied among the strains, suggesting that while glucose preference is common in this species, responses to temperature differ between strains. This system showed sufficient sensitivity to detect variation in mycelial growth. Our study provides a key to unraveling morphological and physiological traits behind the high polymorphisms in <i>S. commune</i>, including the ability to colonize the human respiratory tract.</p>\n </div>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"30 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Analysis Characterizes Phenotypic Variation in the Growth of Mushroom-Forming Fungus Schizophyllum commune\",\"authors\":\"Hiromi Matsumae, Megumi Sudo, Tadashi Imanishi, Tsuyoshi Hosoya\",\"doi\":\"10.1111/gtc.13181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p><i>Schizophyllum commune</i>, a common wood-decay mushroom known for its extremely high genetic variation and as a rare cause of human respiratory diseases, could be a promising model fungus contributing to both biology and medicine. To better understand its phenotypic variation, we developed an image analysis system that quantifies morphological and physiological traits of mycelial colonies in Petri dishes. This study evaluated growth of six wild and one clinical isolates of Japanese <i>S. commune</i>, subjected to different temperatures and glucose concentrations, including a condition mimicking the human respiratory environment. Our analysis revealed that combinations of two growth indices, area and whiteness, and profiling by clustering algorithms highlighted strain-specific responses. For example, the clinical isolate was the whitest under the respiratory-like condition. We also found that the growth rate was strongly determined by glucose concentration, while the effects of temperature on growth varied among the strains, suggesting that while glucose preference is common in this species, responses to temperature differ between strains. This system showed sufficient sensitivity to detect variation in mycelial growth. Our study provides a key to unraveling morphological and physiological traits behind the high polymorphisms in <i>S. commune</i>, including the ability to colonize the human respiratory tract.</p>\\n </div>\",\"PeriodicalId\":12742,\"journal\":{\"name\":\"Genes to Cells\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes to Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13181\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes to Cells","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13181","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Image Analysis Characterizes Phenotypic Variation in the Growth of Mushroom-Forming Fungus Schizophyllum commune
Schizophyllum commune, a common wood-decay mushroom known for its extremely high genetic variation and as a rare cause of human respiratory diseases, could be a promising model fungus contributing to both biology and medicine. To better understand its phenotypic variation, we developed an image analysis system that quantifies morphological and physiological traits of mycelial colonies in Petri dishes. This study evaluated growth of six wild and one clinical isolates of Japanese S. commune, subjected to different temperatures and glucose concentrations, including a condition mimicking the human respiratory environment. Our analysis revealed that combinations of two growth indices, area and whiteness, and profiling by clustering algorithms highlighted strain-specific responses. For example, the clinical isolate was the whitest under the respiratory-like condition. We also found that the growth rate was strongly determined by glucose concentration, while the effects of temperature on growth varied among the strains, suggesting that while glucose preference is common in this species, responses to temperature differ between strains. This system showed sufficient sensitivity to detect variation in mycelial growth. Our study provides a key to unraveling morphological and physiological traits behind the high polymorphisms in S. commune, including the ability to colonize the human respiratory tract.
期刊介绍:
Genes to Cells provides an international forum for the publication of papers describing important aspects of molecular and cellular biology. The journal aims to present papers that provide conceptual advance in the relevant field. Particular emphasis will be placed on work aimed at understanding the basic mechanisms underlying biological events.