{"title":"scGRN-Entropy:利用单细胞数据和基于基因调控网络的转移熵推断细胞分化轨迹","authors":"Rui Sun, Wenjie Cao, ShengXuan Li, Jian Jiang, Yazhou Shi, Bengong Zhang","doi":"10.1371/journal.pcbi.1012638","DOIUrl":null,"url":null,"abstract":"<p><p>Research on cell differentiation facilitates a deeper understanding of the fundamental processes of life, elucidates the intrinsic mechanisms underlying diseases such as cancer, and advances the development of therapeutics and precision medicine. Existing methods for inferring cell differentiation trajectories from single-cell RNA sequencing (scRNA-seq) data primarily rely on static gene expression data to measure distances between cells and subsequently infer pseudotime trajectories. In this work, we introduce a novel method, scGRN-Entropy, for inferring cell differentiation trajectories and pseudotime from scRNA-seq data. Unlike existing approaches, scGRN-Entropy improves inference accuracy by incorporating dynamic changes in gene regulatory networks (GRN). In scGRN-Entropy, an undirected graph representing state transitions between cells is constructed by integrating both static relationships in gene expression space and dynamic relationships in the GRN space. The edges of the undirected graph are then refined using pseudotime inferred based on cell entropy in the GRN space. Finally, the Minimum Spanning Tree (MST) algorithm is applied to derive the cell differentiation trajectory. We validate the accuracy of scGRN-Entropy on eight different real scRNA-seq datasets, demonstrating its superior performance in inferring cell differentiation trajectories through comparative analysis with existing state-of-the-art methods.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"20 11","pages":"e1012638"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scGRN-Entropy: Inferring cell differentiation trajectories using single-cell data and gene regulation network-based transfer entropy.\",\"authors\":\"Rui Sun, Wenjie Cao, ShengXuan Li, Jian Jiang, Yazhou Shi, Bengong Zhang\",\"doi\":\"10.1371/journal.pcbi.1012638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research on cell differentiation facilitates a deeper understanding of the fundamental processes of life, elucidates the intrinsic mechanisms underlying diseases such as cancer, and advances the development of therapeutics and precision medicine. Existing methods for inferring cell differentiation trajectories from single-cell RNA sequencing (scRNA-seq) data primarily rely on static gene expression data to measure distances between cells and subsequently infer pseudotime trajectories. In this work, we introduce a novel method, scGRN-Entropy, for inferring cell differentiation trajectories and pseudotime from scRNA-seq data. Unlike existing approaches, scGRN-Entropy improves inference accuracy by incorporating dynamic changes in gene regulatory networks (GRN). In scGRN-Entropy, an undirected graph representing state transitions between cells is constructed by integrating both static relationships in gene expression space and dynamic relationships in the GRN space. The edges of the undirected graph are then refined using pseudotime inferred based on cell entropy in the GRN space. Finally, the Minimum Spanning Tree (MST) algorithm is applied to derive the cell differentiation trajectory. We validate the accuracy of scGRN-Entropy on eight different real scRNA-seq datasets, demonstrating its superior performance in inferring cell differentiation trajectories through comparative analysis with existing state-of-the-art methods.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"20 11\",\"pages\":\"e1012638\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012638\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012638","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
scGRN-Entropy: Inferring cell differentiation trajectories using single-cell data and gene regulation network-based transfer entropy.
Research on cell differentiation facilitates a deeper understanding of the fundamental processes of life, elucidates the intrinsic mechanisms underlying diseases such as cancer, and advances the development of therapeutics and precision medicine. Existing methods for inferring cell differentiation trajectories from single-cell RNA sequencing (scRNA-seq) data primarily rely on static gene expression data to measure distances between cells and subsequently infer pseudotime trajectories. In this work, we introduce a novel method, scGRN-Entropy, for inferring cell differentiation trajectories and pseudotime from scRNA-seq data. Unlike existing approaches, scGRN-Entropy improves inference accuracy by incorporating dynamic changes in gene regulatory networks (GRN). In scGRN-Entropy, an undirected graph representing state transitions between cells is constructed by integrating both static relationships in gene expression space and dynamic relationships in the GRN space. The edges of the undirected graph are then refined using pseudotime inferred based on cell entropy in the GRN space. Finally, the Minimum Spanning Tree (MST) algorithm is applied to derive the cell differentiation trajectory. We validate the accuracy of scGRN-Entropy on eight different real scRNA-seq datasets, demonstrating its superior performance in inferring cell differentiation trajectories through comparative analysis with existing state-of-the-art methods.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.