Zhihua Pang, Imane Bourouis, Mengfei Li, Cunshe Chen, Xinqi Liu
{"title":"魔芋胶-卵磷脂复合体系的流变学和摩擦学特性:加入唾液和摩擦表面特性的影响","authors":"Zhihua Pang, Imane Bourouis, Mengfei Li, Cunshe Chen, Xinqi Liu","doi":"10.1111/jtxs.12874","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This research explored the development of composite systems using konjac gum (KGM) and soy lecithin at concentrations of 1% KGM–0.01% lecithin and 1% KGM–0.2% lecithin. The study investigated the influence of both oral and artificial saliva on the rheological and tribological properties of these systems, as well as the lubrication on different friction surfaces with varying characteristics. It has been found that different friction surfaces exhibited distinct morphological features and roughness values, significantly impacting surface wettability when treated with saliva. The viscosity of KGM–lecithin composite systems increased slightly compared to KGM hydrogel. However, adding oral or artificial saliva led to a noticeable decrease in viscosity. Lecithin did not significantly alter the viscoelastic properties of KGM gel, but the incorporation of artificial and oral saliva introduced some changes. CLSM images showed that the stability and distribution of lecithin within the composite system varied with lecithin concentration and saliva type, with artificial saliva ensuring a stable and even distribution, while oral saliva caused aggregation and irregular distribution. Furthermore, the study found that the lubrication performance of the KGM-lecithin system was influenced by the properties of the friction surface, with hydrophilic rough surfaces providing superior lubrication compared to rough surfaces. The addition of lecithin enhanced lubrication across all tested surfaces, and artificial saliva surpassed oral saliva in reducing friction coefficients. These findings offer valuable insights into the potential use of KGM-lecithin composite systems as fat mimetics, particularly in enhancing lubrication for various applications.</p>\n </div>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rheological and Tribological Properties of Konjac Gum-Lecithin Composite System: Effect of Incorporation of Saliva and Friction Surface Properties\",\"authors\":\"Zhihua Pang, Imane Bourouis, Mengfei Li, Cunshe Chen, Xinqi Liu\",\"doi\":\"10.1111/jtxs.12874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This research explored the development of composite systems using konjac gum (KGM) and soy lecithin at concentrations of 1% KGM–0.01% lecithin and 1% KGM–0.2% lecithin. The study investigated the influence of both oral and artificial saliva on the rheological and tribological properties of these systems, as well as the lubrication on different friction surfaces with varying characteristics. It has been found that different friction surfaces exhibited distinct morphological features and roughness values, significantly impacting surface wettability when treated with saliva. The viscosity of KGM–lecithin composite systems increased slightly compared to KGM hydrogel. However, adding oral or artificial saliva led to a noticeable decrease in viscosity. Lecithin did not significantly alter the viscoelastic properties of KGM gel, but the incorporation of artificial and oral saliva introduced some changes. CLSM images showed that the stability and distribution of lecithin within the composite system varied with lecithin concentration and saliva type, with artificial saliva ensuring a stable and even distribution, while oral saliva caused aggregation and irregular distribution. Furthermore, the study found that the lubrication performance of the KGM-lecithin system was influenced by the properties of the friction surface, with hydrophilic rough surfaces providing superior lubrication compared to rough surfaces. The addition of lecithin enhanced lubrication across all tested surfaces, and artificial saliva surpassed oral saliva in reducing friction coefficients. These findings offer valuable insights into the potential use of KGM-lecithin composite systems as fat mimetics, particularly in enhancing lubrication for various applications.</p>\\n </div>\",\"PeriodicalId\":17175,\"journal\":{\"name\":\"Journal of texture studies\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of texture studies\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12874\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of texture studies","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12874","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Rheological and Tribological Properties of Konjac Gum-Lecithin Composite System: Effect of Incorporation of Saliva and Friction Surface Properties
This research explored the development of composite systems using konjac gum (KGM) and soy lecithin at concentrations of 1% KGM–0.01% lecithin and 1% KGM–0.2% lecithin. The study investigated the influence of both oral and artificial saliva on the rheological and tribological properties of these systems, as well as the lubrication on different friction surfaces with varying characteristics. It has been found that different friction surfaces exhibited distinct morphological features and roughness values, significantly impacting surface wettability when treated with saliva. The viscosity of KGM–lecithin composite systems increased slightly compared to KGM hydrogel. However, adding oral or artificial saliva led to a noticeable decrease in viscosity. Lecithin did not significantly alter the viscoelastic properties of KGM gel, but the incorporation of artificial and oral saliva introduced some changes. CLSM images showed that the stability and distribution of lecithin within the composite system varied with lecithin concentration and saliva type, with artificial saliva ensuring a stable and even distribution, while oral saliva caused aggregation and irregular distribution. Furthermore, the study found that the lubrication performance of the KGM-lecithin system was influenced by the properties of the friction surface, with hydrophilic rough surfaces providing superior lubrication compared to rough surfaces. The addition of lecithin enhanced lubrication across all tested surfaces, and artificial saliva surpassed oral saliva in reducing friction coefficients. These findings offer valuable insights into the potential use of KGM-lecithin composite systems as fat mimetics, particularly in enhancing lubrication for various applications.
期刊介绍:
The Journal of Texture Studies is a fully peer-reviewed international journal specialized in the physics, physiology, and psychology of food oral processing, with an emphasis on the food texture and structure, sensory perception and mouth-feel, food oral behaviour, food liking and preference. The journal was first published in 1969 and has been the primary source for disseminating advances in knowledge on all of the sciences that relate to food texture. In recent years, Journal of Texture Studies has expanded its coverage to a much broader range of texture research and continues to publish high quality original and innovative experimental-based (including numerical analysis and simulation) research concerned with all aspects of eating and food preference.
Journal of Texture Studies welcomes research articles, research notes, reviews, discussion papers, and communications from contributors of all relevant disciplines. Some key coverage areas/topics include (but not limited to):
• Physical, mechanical, and micro-structural principles of food texture
• Oral physiology
• Psychology and brain responses of eating and food sensory
• Food texture design and modification for specific consumers
• In vitro and in vivo studies of eating and swallowing
• Novel technologies and methodologies for the assessment of sensory properties
• Simulation and numerical analysis of eating and swallowing