Xiaoying Rong, Xin Liu, Fang Du, Zachary T Aanderud, Yuanming Zhang
{"title":"中国西北部古尔班通古特沙漠中氨氧化微生物的生态位分布和多样性受生物壳的影响","authors":"Xiaoying Rong, Xin Liu, Fang Du, Zachary T Aanderud, Yuanming Zhang","doi":"10.1007/s00248-024-02453-5","DOIUrl":null,"url":null,"abstract":"<p><p>Biological soil crusts (biocrusts) play pivotal ecological roles in regulating nitrogen cycling within desert ecosystems. While acknowledging the essential role played by ammonia-oxidizing microorganisms in nitrogen transformation, there remains a paucity of understanding concerning how disturbances to biocrusts impact the diversity and spatial distribution patterns among ammonia oxidizer communities within temperate deserts. This investigation delved into assessing how 4 years' worth of removing biocrust influenced niche differentiation between nitrifying archaea and bacteria while also examining its effects on shaping community structures of predominant ammonia-oxidizing archaea (AOA) within the Gurbantunggut Desert soils. Despite notable variations in abundance of ammonia-oxidizing microbes across distinct soil depths throughout different seasons, it became apparent that removing biocrust significantly altered both the abundance and niche pattern for AOA alongside their bacterial counterparts during winter and summer periods. Notably dominating over their bacterial counterparts within desert soils, AOA displayed their highest archaeal to bacterial amoA gene copy ratio (6549-fold higher) at a soil depth of 5-10 cm during summer. Moreover, substantial impacts were observed upon AOA diversity along with compositional changes following such perturbation events. The aftermath saw an emergence of more diffuse yet dynamic AOA communities, especially noticeable amidst winter when nitrogen and water limitations were relatively alleviated. In summary, our findings underscore how interactions between biocrust coverages alongside factors like soil temperature, total carbon content, or NO<sub>3</sub><sup>-</sup>_N concentrations govern niches occupied by ammoxidation communities whilst influencing assemblage processes too. The sensitivity shown by dominant AOAs towards biocrust removal further underscores how biocrust coverage influences nitrogen transformation processes while potentially involving other communities and functions in desert ecosystems.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"148"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588837/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biocrusts Mediate the Niche Distribution and Diversity of Ammonia-Oxidizing Microorganisms in the Gurbantunggut Desert, Northwestern China.\",\"authors\":\"Xiaoying Rong, Xin Liu, Fang Du, Zachary T Aanderud, Yuanming Zhang\",\"doi\":\"10.1007/s00248-024-02453-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological soil crusts (biocrusts) play pivotal ecological roles in regulating nitrogen cycling within desert ecosystems. While acknowledging the essential role played by ammonia-oxidizing microorganisms in nitrogen transformation, there remains a paucity of understanding concerning how disturbances to biocrusts impact the diversity and spatial distribution patterns among ammonia oxidizer communities within temperate deserts. This investigation delved into assessing how 4 years' worth of removing biocrust influenced niche differentiation between nitrifying archaea and bacteria while also examining its effects on shaping community structures of predominant ammonia-oxidizing archaea (AOA) within the Gurbantunggut Desert soils. Despite notable variations in abundance of ammonia-oxidizing microbes across distinct soil depths throughout different seasons, it became apparent that removing biocrust significantly altered both the abundance and niche pattern for AOA alongside their bacterial counterparts during winter and summer periods. Notably dominating over their bacterial counterparts within desert soils, AOA displayed their highest archaeal to bacterial amoA gene copy ratio (6549-fold higher) at a soil depth of 5-10 cm during summer. Moreover, substantial impacts were observed upon AOA diversity along with compositional changes following such perturbation events. The aftermath saw an emergence of more diffuse yet dynamic AOA communities, especially noticeable amidst winter when nitrogen and water limitations were relatively alleviated. In summary, our findings underscore how interactions between biocrust coverages alongside factors like soil temperature, total carbon content, or NO<sub>3</sub><sup>-</sup>_N concentrations govern niches occupied by ammoxidation communities whilst influencing assemblage processes too. The sensitivity shown by dominant AOAs towards biocrust removal further underscores how biocrust coverage influences nitrogen transformation processes while potentially involving other communities and functions in desert ecosystems.</p>\",\"PeriodicalId\":18708,\"journal\":{\"name\":\"Microbial Ecology\",\"volume\":\"87 1\",\"pages\":\"148\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588837/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00248-024-02453-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02453-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Biocrusts Mediate the Niche Distribution and Diversity of Ammonia-Oxidizing Microorganisms in the Gurbantunggut Desert, Northwestern China.
Biological soil crusts (biocrusts) play pivotal ecological roles in regulating nitrogen cycling within desert ecosystems. While acknowledging the essential role played by ammonia-oxidizing microorganisms in nitrogen transformation, there remains a paucity of understanding concerning how disturbances to biocrusts impact the diversity and spatial distribution patterns among ammonia oxidizer communities within temperate deserts. This investigation delved into assessing how 4 years' worth of removing biocrust influenced niche differentiation between nitrifying archaea and bacteria while also examining its effects on shaping community structures of predominant ammonia-oxidizing archaea (AOA) within the Gurbantunggut Desert soils. Despite notable variations in abundance of ammonia-oxidizing microbes across distinct soil depths throughout different seasons, it became apparent that removing biocrust significantly altered both the abundance and niche pattern for AOA alongside their bacterial counterparts during winter and summer periods. Notably dominating over their bacterial counterparts within desert soils, AOA displayed their highest archaeal to bacterial amoA gene copy ratio (6549-fold higher) at a soil depth of 5-10 cm during summer. Moreover, substantial impacts were observed upon AOA diversity along with compositional changes following such perturbation events. The aftermath saw an emergence of more diffuse yet dynamic AOA communities, especially noticeable amidst winter when nitrogen and water limitations were relatively alleviated. In summary, our findings underscore how interactions between biocrust coverages alongside factors like soil temperature, total carbon content, or NO3-_N concentrations govern niches occupied by ammoxidation communities whilst influencing assemblage processes too. The sensitivity shown by dominant AOAs towards biocrust removal further underscores how biocrust coverage influences nitrogen transformation processes while potentially involving other communities and functions in desert ecosystems.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.