肠杆菌科动物对低温的转录反应保守性很弱。

IF 5 2区 生物学 Q1 MICROBIOLOGY mSystems Pub Date : 2024-12-17 Epub Date: 2024-11-26 DOI:10.1128/msystems.00785-24
Johnson Hoang, Daniel M Stoebel
{"title":"肠杆菌科动物对低温的转录反应保守性很弱。","authors":"Johnson Hoang, Daniel M Stoebel","doi":"10.1128/msystems.00785-24","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria respond to changes in their external environment, such as temperature, by changing the transcription of their genes. We know little about how these regulatory patterns evolve. We used RNA-seq to study the transcriptional response to a shift from 37°C to 15°C in wild-type <i>Escherichia coli</i>, <i>Salmonella enterica</i>, <i>Citrobacter rodentium</i>, <i>Enterobacter cloacae</i>, <i>Klebsiella pneumoniae</i>, and <i>Serratia marcescens</i>, as well as ∆<i>rpoS</i> strains of <i>E. coli</i> and <i>S. enterica</i>. We found that these species change the transcription of between 626 and 1057 genes in response to the temperature shift, but there were only 16 differentially expressed genes in common among the six species. Species-specific transcriptional patterns of shared genes were a prominent cause of this lack of conservation. Gene ontology enrichment of regulated genes suggested many species-specific phenotypic responses to temperature changes, but enriched terms associated with iron metabolism, central metabolism, and biofilm formation were implicated in at least half of the species. The alternative sigma factor RpoS regulated about 200 genes between 37°C and 15°C in both <i>E. coli</i> and <i>S. enterica</i>, with only 83 genes in common between the two species. Overall, there was limited conservation of the response to low temperature generally, or the RpoS-regulated part of the response specifically. This study suggests that species-specific patterns of transcription of shared genes, rather than horizontal acquisition of unique genes, are the major reason for the lack of conservation of the transcriptomic response to low temperature.</p><p><strong>Importance: </strong>We studied how different species of bacteria from the same Family (Enterobacteriaceae) change the expression of their genes in response to a decrease in temperature. Using <i>de novo</i>-generated parallel RNA-seq data sets, we found that the six species in this study change the level of expression of many of their genes in response to a shift from human body temperature (37°C) to a temperature that might be found out of doors (15°C). Surprisingly, there were very few genes that change expression in all six species. This was due in part to differences in gene content, and in part due to shared genes with distinct expression profiles between the species. This study is important to the field because it illustrates that closely related species can share many genes but not use those genes in the same way in response to the same environmental change.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0078524"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651113/pdf/","citationCount":"0","resultStr":"{\"title\":\"The transcriptional response to low temperature is weakly conserved across the <i>Enterobacteriaceae</i>.\",\"authors\":\"Johnson Hoang, Daniel M Stoebel\",\"doi\":\"10.1128/msystems.00785-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteria respond to changes in their external environment, such as temperature, by changing the transcription of their genes. We know little about how these regulatory patterns evolve. We used RNA-seq to study the transcriptional response to a shift from 37°C to 15°C in wild-type <i>Escherichia coli</i>, <i>Salmonella enterica</i>, <i>Citrobacter rodentium</i>, <i>Enterobacter cloacae</i>, <i>Klebsiella pneumoniae</i>, and <i>Serratia marcescens</i>, as well as ∆<i>rpoS</i> strains of <i>E. coli</i> and <i>S. enterica</i>. We found that these species change the transcription of between 626 and 1057 genes in response to the temperature shift, but there were only 16 differentially expressed genes in common among the six species. Species-specific transcriptional patterns of shared genes were a prominent cause of this lack of conservation. Gene ontology enrichment of regulated genes suggested many species-specific phenotypic responses to temperature changes, but enriched terms associated with iron metabolism, central metabolism, and biofilm formation were implicated in at least half of the species. The alternative sigma factor RpoS regulated about 200 genes between 37°C and 15°C in both <i>E. coli</i> and <i>S. enterica</i>, with only 83 genes in common between the two species. Overall, there was limited conservation of the response to low temperature generally, or the RpoS-regulated part of the response specifically. This study suggests that species-specific patterns of transcription of shared genes, rather than horizontal acquisition of unique genes, are the major reason for the lack of conservation of the transcriptomic response to low temperature.</p><p><strong>Importance: </strong>We studied how different species of bacteria from the same Family (Enterobacteriaceae) change the expression of their genes in response to a decrease in temperature. Using <i>de novo</i>-generated parallel RNA-seq data sets, we found that the six species in this study change the level of expression of many of their genes in response to a shift from human body temperature (37°C) to a temperature that might be found out of doors (15°C). Surprisingly, there were very few genes that change expression in all six species. This was due in part to differences in gene content, and in part due to shared genes with distinct expression profiles between the species. This study is important to the field because it illustrates that closely related species can share many genes but not use those genes in the same way in response to the same environmental change.</p>\",\"PeriodicalId\":18819,\"journal\":{\"name\":\"mSystems\",\"volume\":\" \",\"pages\":\"e0078524\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651113/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msystems.00785-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.00785-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细菌通过改变基因转录来应对外部环境的变化,例如温度。我们对这些调控模式是如何演变的知之甚少。我们使用 RNA-seq 研究了野生型大肠杆菌、肠炎沙门氏菌、棒状杆菌、泄殖腔肠杆菌、肺炎克雷伯氏菌、肉毒杆菌以及大肠杆菌和肠炎沙门氏菌的 ∆rpoS 菌株对从 37°C 到 15°C 温度变化的转录反应。我们发现,这些物种有 626 至 1057 个基因的转录随温度变化而改变,但这 6 个物种中只有 16 个基因有共同的差异表达。共享基因的物种特异性转录模式是造成这种缺乏保护的主要原因。基因本体论对受调控基因的富集表明,许多物种对温度变化的表型反应具有特异性,但至少有一半物种与铁代谢、中心代谢和生物膜形成相关的富集术语有牵连。在大肠杆菌和肠杆菌中,替代性 sigma 因子 RpoS 在 37°C 和 15°C 之间调控了约 200 个基因,两个物种之间只有 83 个基因是相同的。总体而言,对低温的反应或受 RpoS 调节的反应部分的保存有限。这项研究表明,共享基因的物种特异性转录模式,而不是独特基因的水平获取,是低温反应转录组缺乏保护的主要原因:我们研究了同一科(肠杆菌科)不同种类的细菌如何改变其基因的表达以应对温度的降低。通过使用新生成的并行 RNA-seq 数据集,我们发现本研究中的六个物种会改变其许多基因的表达水平,以应对从人体温度(37°C)到室外温度(15°C)的变化。令人惊讶的是,在所有六个物种中,只有极少数基因的表达发生了变化。这部分是由于基因含量的差异,部分是由于物种间具有不同表达谱的共有基因。这项研究对该领域具有重要意义,因为它说明了亲缘关系很近的物种可以共享许多基因,但在应对相同的环境变化时却不会以相同的方式使用这些基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The transcriptional response to low temperature is weakly conserved across the Enterobacteriaceae.

Bacteria respond to changes in their external environment, such as temperature, by changing the transcription of their genes. We know little about how these regulatory patterns evolve. We used RNA-seq to study the transcriptional response to a shift from 37°C to 15°C in wild-type Escherichia coli, Salmonella enterica, Citrobacter rodentium, Enterobacter cloacae, Klebsiella pneumoniae, and Serratia marcescens, as well as ∆rpoS strains of E. coli and S. enterica. We found that these species change the transcription of between 626 and 1057 genes in response to the temperature shift, but there were only 16 differentially expressed genes in common among the six species. Species-specific transcriptional patterns of shared genes were a prominent cause of this lack of conservation. Gene ontology enrichment of regulated genes suggested many species-specific phenotypic responses to temperature changes, but enriched terms associated with iron metabolism, central metabolism, and biofilm formation were implicated in at least half of the species. The alternative sigma factor RpoS regulated about 200 genes between 37°C and 15°C in both E. coli and S. enterica, with only 83 genes in common between the two species. Overall, there was limited conservation of the response to low temperature generally, or the RpoS-regulated part of the response specifically. This study suggests that species-specific patterns of transcription of shared genes, rather than horizontal acquisition of unique genes, are the major reason for the lack of conservation of the transcriptomic response to low temperature.

Importance: We studied how different species of bacteria from the same Family (Enterobacteriaceae) change the expression of their genes in response to a decrease in temperature. Using de novo-generated parallel RNA-seq data sets, we found that the six species in this study change the level of expression of many of their genes in response to a shift from human body temperature (37°C) to a temperature that might be found out of doors (15°C). Surprisingly, there were very few genes that change expression in all six species. This was due in part to differences in gene content, and in part due to shared genes with distinct expression profiles between the species. This study is important to the field because it illustrates that closely related species can share many genes but not use those genes in the same way in response to the same environmental change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mSystems
mSystems Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍: mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.
期刊最新文献
Correction for Taylor et al., "Depression in Individuals Coinfected with HIV and HCV Is Associated with Systematic Differences in the Gut Microbiome and Metabolome". Discovery of viruses and bacteria associated with swine respiratory disease on farms at a nationwide scale in China using metatranscriptomic and metagenomic sequencing. Exploration of the genetic landscape of bacterial dsDNA viruses reveals an ANI gap amid extensive mosaicism. With a little help from my friends: importance of protist-protist interactions in structuring marine protistan communities in the San Pedro Channel. Biodiversity within phytoplankton-associated microbiomes regulates host physiology, host community ecology, and nutrient cycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1