MedSegBench:多种数据模式下医学图像分割的综合基准。

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-11-25 DOI:10.1038/s41597-024-04159-2
Zeki Kuş, Musa Aydin
{"title":"MedSegBench:多种数据模式下医学图像分割的综合基准。","authors":"Zeki Kuş, Musa Aydin","doi":"10.1038/s41597-024-04159-2","DOIUrl":null,"url":null,"abstract":"<p><p>MedSegBench is a comprehensive benchmark designed to evaluate deep learning models for medical image segmentation across a wide range of modalities. It covers a wide range of modalities, including 35 datasets with over 60,000 images from ultrasound, MRI, and X-ray. The benchmark addresses challenges in medical imaging by providing standardized datasets with train/validation/test splits, considering variability in image quality and dataset imbalances. The benchmark supports binary and multi-class segmentation tasks with up to 19 classes and uses the U-Net architecture with various encoder/decoder networks such as ResNets, EfficientNet, and DenseNet for evaluations. MedSegBench is a valuable resource for developing robust and flexible segmentation algorithms and allows for fair comparisons across different models, promoting the development of universal models for medical tasks. It is the most comprehensive study among medical segmentation datasets. The datasets and source code are publicly available, encouraging further research and development in medical image analysis.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1283"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589128/pdf/","citationCount":"0","resultStr":"{\"title\":\"MedSegBench: A comprehensive benchmark for medical image segmentation in diverse data modalities.\",\"authors\":\"Zeki Kuş, Musa Aydin\",\"doi\":\"10.1038/s41597-024-04159-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MedSegBench is a comprehensive benchmark designed to evaluate deep learning models for medical image segmentation across a wide range of modalities. It covers a wide range of modalities, including 35 datasets with over 60,000 images from ultrasound, MRI, and X-ray. The benchmark addresses challenges in medical imaging by providing standardized datasets with train/validation/test splits, considering variability in image quality and dataset imbalances. The benchmark supports binary and multi-class segmentation tasks with up to 19 classes and uses the U-Net architecture with various encoder/decoder networks such as ResNets, EfficientNet, and DenseNet for evaluations. MedSegBench is a valuable resource for developing robust and flexible segmentation algorithms and allows for fair comparisons across different models, promoting the development of universal models for medical tasks. It is the most comprehensive study among medical segmentation datasets. The datasets and source code are publicly available, encouraging further research and development in medical image analysis.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1283\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589128/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04159-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04159-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

MedSegBench 是一个综合基准,旨在评估各种模式下医学图像分割的深度学习模型。它涵盖多种模式,包括 35 个数据集,包含 60,000 多张超声波、核磁共振成像和 X 光图像。该基准考虑到图像质量的可变性和数据集的不平衡性,提供了具有训练/验证/测试分割的标准化数据集,从而解决了医学成像中的难题。该基准支持多达 19 类的二元和多类分割任务,并使用 U-Net 架构和各种编码器/解码器网络(如 ResNets、EfficientNet 和 DenseNet)进行评估。MedSegBench 是开发稳健灵活的分割算法的宝贵资源,它允许对不同模型进行公平比较,促进了医疗任务通用模型的开发。它是医学分割数据集中最全面的研究。这些数据集和源代码都是公开的,有助于医学图像分析领域的进一步研究和开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MedSegBench: A comprehensive benchmark for medical image segmentation in diverse data modalities.

MedSegBench is a comprehensive benchmark designed to evaluate deep learning models for medical image segmentation across a wide range of modalities. It covers a wide range of modalities, including 35 datasets with over 60,000 images from ultrasound, MRI, and X-ray. The benchmark addresses challenges in medical imaging by providing standardized datasets with train/validation/test splits, considering variability in image quality and dataset imbalances. The benchmark supports binary and multi-class segmentation tasks with up to 19 classes and uses the U-Net architecture with various encoder/decoder networks such as ResNets, EfficientNet, and DenseNet for evaluations. MedSegBench is a valuable resource for developing robust and flexible segmentation algorithms and allows for fair comparisons across different models, promoting the development of universal models for medical tasks. It is the most comprehensive study among medical segmentation datasets. The datasets and source code are publicly available, encouraging further research and development in medical image analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
Cast vote records: A database of ballots from the 2020 U.S. Election. DERM12345: A Large, Multisource Dermatoscopic Skin Lesion Dataset with 40 Subclasses. Global climatological dataset of undersea acoustic parameters derived from the NCEI World Ocean Atlas 2023. In-vivo non-contact multispectral oral disease image dataset with segmentation. mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1