{"title":"在三氯乙烯诱导的免疫性肝损伤中,Wnt5a促进了Kupffer细胞的活化。","authors":"Lei Gao, Ya-Ni Ding, Peng-Cheng Zhou, Luo-Lun Dong, Xin-Yu Peng, Yi-Ru Tang, Qi-Xing Zhu, Jia-Xiang Zhang","doi":"10.1177/07482337241300953","DOIUrl":null,"url":null,"abstract":"<p><p>Trichloroethylene (TCE) is a volatile, colorless liquid that is widely used as a chlorinated organic vehicle in industrial production and processing industries. Many workers exposed to trichloroethylene may develop trichloroethylene hypersensitivity syndrome (THS). However, the underlying mechanism of THS is still unclear, especially liver injury. The present study aimed to investigate whether Wnt5a/c-Jun N-terminal kinase (JNK) is involved in and regulates liver injury caused by TCE exposure and to provide new directions for the prevention and treatment in clinical settings of liver injury caused by TCE exposure. We used 6- to 8-week-old SPF-grade BALB/c female mice to establish a TCE sensitization model and explored the mechanism through inhibitor intervention. We found that the expression of Wnt5a/JNK was significantly elevated in the liver of TCE sensitization-positive mice. Inhibitors of Wnt Production 2 (IWP-2) are known antagonists of the Wnt pathway. TCE-sensitization mice treated with IWP-2 showed downregulated Wnt5a/JNK expression, reduced Kupffer cell activation, and decreased liver injury. At the same time, we found that phosphorylated JNK in TCE-sensitization mouse livers and extracted Kupffer cells showed a significant downward trend after inhibition of Wnt5a function. We also found that a specific JNK inhibitor, SP600125, decreased the secretion of cytokines and chemokines and decreased Kupffer cell activation. We demonstrated that Wnt5a/JNK was involved in the regulation of liver injury in TCE-sensitization mice and that it exacerbated liver injury by activating Kupffer cells and releasing chemokines. We therefore hypothesized that Kupffer cell activation was affected by JNK, which reduced chemokine and cytokine secretion and attenuated liver injury in TCE-sensitization mice.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"83-96"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wnt5a promotes Kupffer cell activation in trichloroethylene-induced immune liver injury.\",\"authors\":\"Lei Gao, Ya-Ni Ding, Peng-Cheng Zhou, Luo-Lun Dong, Xin-Yu Peng, Yi-Ru Tang, Qi-Xing Zhu, Jia-Xiang Zhang\",\"doi\":\"10.1177/07482337241300953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trichloroethylene (TCE) is a volatile, colorless liquid that is widely used as a chlorinated organic vehicle in industrial production and processing industries. Many workers exposed to trichloroethylene may develop trichloroethylene hypersensitivity syndrome (THS). However, the underlying mechanism of THS is still unclear, especially liver injury. The present study aimed to investigate whether Wnt5a/c-Jun N-terminal kinase (JNK) is involved in and regulates liver injury caused by TCE exposure and to provide new directions for the prevention and treatment in clinical settings of liver injury caused by TCE exposure. We used 6- to 8-week-old SPF-grade BALB/c female mice to establish a TCE sensitization model and explored the mechanism through inhibitor intervention. We found that the expression of Wnt5a/JNK was significantly elevated in the liver of TCE sensitization-positive mice. Inhibitors of Wnt Production 2 (IWP-2) are known antagonists of the Wnt pathway. TCE-sensitization mice treated with IWP-2 showed downregulated Wnt5a/JNK expression, reduced Kupffer cell activation, and decreased liver injury. At the same time, we found that phosphorylated JNK in TCE-sensitization mouse livers and extracted Kupffer cells showed a significant downward trend after inhibition of Wnt5a function. We also found that a specific JNK inhibitor, SP600125, decreased the secretion of cytokines and chemokines and decreased Kupffer cell activation. We demonstrated that Wnt5a/JNK was involved in the regulation of liver injury in TCE-sensitization mice and that it exacerbated liver injury by activating Kupffer cells and releasing chemokines. We therefore hypothesized that Kupffer cell activation was affected by JNK, which reduced chemokine and cytokine secretion and attenuated liver injury in TCE-sensitization mice.</p>\",\"PeriodicalId\":23171,\"journal\":{\"name\":\"Toxicology and Industrial Health\",\"volume\":\" \",\"pages\":\"83-96\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and Industrial Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/07482337241300953\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and Industrial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/07482337241300953","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Wnt5a promotes Kupffer cell activation in trichloroethylene-induced immune liver injury.
Trichloroethylene (TCE) is a volatile, colorless liquid that is widely used as a chlorinated organic vehicle in industrial production and processing industries. Many workers exposed to trichloroethylene may develop trichloroethylene hypersensitivity syndrome (THS). However, the underlying mechanism of THS is still unclear, especially liver injury. The present study aimed to investigate whether Wnt5a/c-Jun N-terminal kinase (JNK) is involved in and regulates liver injury caused by TCE exposure and to provide new directions for the prevention and treatment in clinical settings of liver injury caused by TCE exposure. We used 6- to 8-week-old SPF-grade BALB/c female mice to establish a TCE sensitization model and explored the mechanism through inhibitor intervention. We found that the expression of Wnt5a/JNK was significantly elevated in the liver of TCE sensitization-positive mice. Inhibitors of Wnt Production 2 (IWP-2) are known antagonists of the Wnt pathway. TCE-sensitization mice treated with IWP-2 showed downregulated Wnt5a/JNK expression, reduced Kupffer cell activation, and decreased liver injury. At the same time, we found that phosphorylated JNK in TCE-sensitization mouse livers and extracted Kupffer cells showed a significant downward trend after inhibition of Wnt5a function. We also found that a specific JNK inhibitor, SP600125, decreased the secretion of cytokines and chemokines and decreased Kupffer cell activation. We demonstrated that Wnt5a/JNK was involved in the regulation of liver injury in TCE-sensitization mice and that it exacerbated liver injury by activating Kupffer cells and releasing chemokines. We therefore hypothesized that Kupffer cell activation was affected by JNK, which reduced chemokine and cytokine secretion and attenuated liver injury in TCE-sensitization mice.
期刊介绍:
Toxicology & Industrial Health is a journal dedicated to reporting results of basic and applied toxicological research with direct application to industrial/occupational health. Such research includes the fields of genetic and cellular toxicology and risk assessment associated with hazardous wastes and groundwater.