研究狂犬病病毒当代进化的分子钟假说。

IF 5.5 1区 医学 Q1 MICROBIOLOGY PLoS Pathogens Pub Date : 2024-11-25 eCollection Date: 2024-11-01 DOI:10.1371/journal.ppat.1012740
Rowan Durrant, Christina A Cobbold, Kirstyn Brunker, Kathryn Campbell, Jonathan Dushoff, Elaine A Ferguson, Gurdeep Jaswant, Ahmed Lugelo, Kennedy Lushasi, Lwitiko Sikana, Katie Hampson
{"title":"研究狂犬病病毒当代进化的分子钟假说。","authors":"Rowan Durrant, Christina A Cobbold, Kirstyn Brunker, Kathryn Campbell, Jonathan Dushoff, Elaine A Ferguson, Gurdeep Jaswant, Ahmed Lugelo, Kennedy Lushasi, Lwitiko Sikana, Katie Hampson","doi":"10.1371/journal.ppat.1012740","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular clock hypothesis assumes that mutations accumulate on an organism's genome at a constant rate over time, but this assumption does not always hold true. While modelling approaches exist to accommodate deviations from a strict molecular clock, assumptions about rate variation may not fully represent the underlying evolutionary processes. There is considerable variability in rabies virus (RABV) incubation periods, ranging from days to over a year, during which viral replication may be reduced. This prompts the question of whether modelling RABV on a per infection generation basis might be more appropriate. We investigate how variable incubation periods affect root-to-tip divergence under per-unit time and per-generation models of mutation. Additionally, we assess how well these models represent root-to-tip divergence in time-stamped RABV sequences. We find that at low substitution rates (<1 substitution per genome per generation) divergence patterns between these models are difficult to distinguish, while above this threshold differences become apparent across a range of sampling rates. Using a Tanzanian RABV dataset, we calculate the mean substitution rate to be 0.17 substitutions per genome per generation. At RABV's substitution rate, the per-generation substitution model is unlikely to represent rabies evolution substantially differently than the molecular clock model when examining contemporary outbreaks; over enough generations for any divergence to accumulate, extreme incubation periods average out. However, measuring substitution rates per-generation holds potential in applications such as inferring transmission trees and predicting lineage emergence.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"20 11","pages":"e1012740"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627394/pdf/","citationCount":"0","resultStr":"{\"title\":\"Examining the molecular clock hypothesis for the contemporary evolution of the rabies virus.\",\"authors\":\"Rowan Durrant, Christina A Cobbold, Kirstyn Brunker, Kathryn Campbell, Jonathan Dushoff, Elaine A Ferguson, Gurdeep Jaswant, Ahmed Lugelo, Kennedy Lushasi, Lwitiko Sikana, Katie Hampson\",\"doi\":\"10.1371/journal.ppat.1012740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The molecular clock hypothesis assumes that mutations accumulate on an organism's genome at a constant rate over time, but this assumption does not always hold true. While modelling approaches exist to accommodate deviations from a strict molecular clock, assumptions about rate variation may not fully represent the underlying evolutionary processes. There is considerable variability in rabies virus (RABV) incubation periods, ranging from days to over a year, during which viral replication may be reduced. This prompts the question of whether modelling RABV on a per infection generation basis might be more appropriate. We investigate how variable incubation periods affect root-to-tip divergence under per-unit time and per-generation models of mutation. Additionally, we assess how well these models represent root-to-tip divergence in time-stamped RABV sequences. We find that at low substitution rates (<1 substitution per genome per generation) divergence patterns between these models are difficult to distinguish, while above this threshold differences become apparent across a range of sampling rates. Using a Tanzanian RABV dataset, we calculate the mean substitution rate to be 0.17 substitutions per genome per generation. At RABV's substitution rate, the per-generation substitution model is unlikely to represent rabies evolution substantially differently than the molecular clock model when examining contemporary outbreaks; over enough generations for any divergence to accumulate, extreme incubation periods average out. However, measuring substitution rates per-generation holds potential in applications such as inferring transmission trees and predicting lineage emergence.</p>\",\"PeriodicalId\":48999,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"20 11\",\"pages\":\"e1012740\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627394/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1012740\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012740","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

分子钟假说假定突变在生物基因组上以恒定的速率随时间累积,但这一假说并不总是成立的。虽然有建模方法来适应严格分子钟的偏差,但关于速率变化的假设可能并不能完全代表潜在的进化过程。狂犬病病毒(RABV)潜伏期的变化很大,从几天到一年多不等,在此期间病毒复制可能会减少。这就提出了一个问题:以每一代感染为基础建立 RABV 模型是否更为合适。我们研究了在单位时间和每代变异模型下,可变潜伏期对根尖分化的影响。此外,我们还评估了这些模型在有时间戳的 RABV 序列中对根尖分化的表现程度。我们发现,在低替换率(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Examining the molecular clock hypothesis for the contemporary evolution of the rabies virus.

The molecular clock hypothesis assumes that mutations accumulate on an organism's genome at a constant rate over time, but this assumption does not always hold true. While modelling approaches exist to accommodate deviations from a strict molecular clock, assumptions about rate variation may not fully represent the underlying evolutionary processes. There is considerable variability in rabies virus (RABV) incubation periods, ranging from days to over a year, during which viral replication may be reduced. This prompts the question of whether modelling RABV on a per infection generation basis might be more appropriate. We investigate how variable incubation periods affect root-to-tip divergence under per-unit time and per-generation models of mutation. Additionally, we assess how well these models represent root-to-tip divergence in time-stamped RABV sequences. We find that at low substitution rates (<1 substitution per genome per generation) divergence patterns between these models are difficult to distinguish, while above this threshold differences become apparent across a range of sampling rates. Using a Tanzanian RABV dataset, we calculate the mean substitution rate to be 0.17 substitutions per genome per generation. At RABV's substitution rate, the per-generation substitution model is unlikely to represent rabies evolution substantially differently than the molecular clock model when examining contemporary outbreaks; over enough generations for any divergence to accumulate, extreme incubation periods average out. However, measuring substitution rates per-generation holds potential in applications such as inferring transmission trees and predicting lineage emergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
期刊最新文献
Naturally occurring variation in a cytochrome P450 modifies thiabendazole responses independently of beta-tubulin. The malaria parasite PP1 phosphatase controls the initiation of the egress pathway of asexual blood-stages by regulating the rounding-up of the vacuole. Calcium-mediated mitochondrial fission and mitophagy drive glycolysis to facilitate arterivirus proliferation. Casein Kinases 2-dependent phosphorylation of the placental ligand VAR2CSA regulates Plasmodium falciparum-infected erythrocytes cytoadhesion. Genomic exploration of the journey of Plasmodium vivax in Latin America.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1