{"title":"原生草地土壤微生物组对春秋两季重度放牧的不同反应。","authors":"Newton Z Lupwayi, Xiying Hao, Monika A Gorzelak","doi":"10.1099/mic.0.001517","DOIUrl":null,"url":null,"abstract":"<p><p>Grasslands are estimated to cover about 40% of the earth's land area and are primarily used for grazing. Despite their importance globally, there is a paucity of information on long-term grazing effects on the soil microbiome. We used a 68-year-old grazing experiment to determine differences in the soil permanganate-oxidizable C (POXC), microbial biomass C (MBC), the soil prokaryotic (bacterial and archaeal) community composition and enzyme activities between no-grazing, light grazing and heavy grazing, i.e. 0, 1.2 and 2.4 animal unit months (AUM) ha<sup>-1</sup>. The grazing effects were determined in spring and fall grazing. Light grazing had little effect on soil MBC and the composition and diversity of prokaryotic communities in either grazing season, but the effects of heavy grazing depended on the grazing season. In spring, heavy grazing increased the relative abundances of copiotrophic phyla <i>Actinomycetota, Bacillota</i> and <i>Nitrososphaerota</i>, along with soil POXC contents but decreased those of oligotrophic phyla <i>Acidobacteriota, Verrucomicrobiota</i> and <i>Nitrospirota</i>. This difference in responses was not observed in fall, when grazing reduced soil POXC, MBC and the relative abundances of most phyla. The <i>β</i>-diversity analysis showed that the prokaryotic community structure under heavy grazing was different from those in the control and light grazing treatments, and <i>α</i>-diversity indices (except the Shannon index) were highest under heavy grazing in both grazing seasons. The activities of P-mobilizing and S-mobilizing soil enzymes decreased with increasing cattle stocking rate in both seasons, but the activities of the enzymes that mediate C and N cycling decreased only in the fall. The genus <i>RB41</i> (phylum <i>Acidobacteriota</i>) was one of two core bacterial genera, and its relative abundance was positively correlated with the activity of the S-mobilizing enzyme. Therefore, light grazing is recommended to reduce negative effects on the grassland soil microbiome and its activity, and the grazing season should be considered when evaluating such grazing effects.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divergent responses of the native grassland soil microbiome to heavy grazing between spring and fall.\",\"authors\":\"Newton Z Lupwayi, Xiying Hao, Monika A Gorzelak\",\"doi\":\"10.1099/mic.0.001517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Grasslands are estimated to cover about 40% of the earth's land area and are primarily used for grazing. Despite their importance globally, there is a paucity of information on long-term grazing effects on the soil microbiome. We used a 68-year-old grazing experiment to determine differences in the soil permanganate-oxidizable C (POXC), microbial biomass C (MBC), the soil prokaryotic (bacterial and archaeal) community composition and enzyme activities between no-grazing, light grazing and heavy grazing, i.e. 0, 1.2 and 2.4 animal unit months (AUM) ha<sup>-1</sup>. The grazing effects were determined in spring and fall grazing. Light grazing had little effect on soil MBC and the composition and diversity of prokaryotic communities in either grazing season, but the effects of heavy grazing depended on the grazing season. In spring, heavy grazing increased the relative abundances of copiotrophic phyla <i>Actinomycetota, Bacillota</i> and <i>Nitrososphaerota</i>, along with soil POXC contents but decreased those of oligotrophic phyla <i>Acidobacteriota, Verrucomicrobiota</i> and <i>Nitrospirota</i>. This difference in responses was not observed in fall, when grazing reduced soil POXC, MBC and the relative abundances of most phyla. The <i>β</i>-diversity analysis showed that the prokaryotic community structure under heavy grazing was different from those in the control and light grazing treatments, and <i>α</i>-diversity indices (except the Shannon index) were highest under heavy grazing in both grazing seasons. The activities of P-mobilizing and S-mobilizing soil enzymes decreased with increasing cattle stocking rate in both seasons, but the activities of the enzymes that mediate C and N cycling decreased only in the fall. The genus <i>RB41</i> (phylum <i>Acidobacteriota</i>) was one of two core bacterial genera, and its relative abundance was positively correlated with the activity of the S-mobilizing enzyme. Therefore, light grazing is recommended to reduce negative effects on the grassland soil microbiome and its activity, and the grazing season should be considered when evaluating such grazing effects.</p>\",\"PeriodicalId\":49819,\"journal\":{\"name\":\"Microbiology-Sgm\",\"volume\":\"170 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology-Sgm\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001517\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001517","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Divergent responses of the native grassland soil microbiome to heavy grazing between spring and fall.
Grasslands are estimated to cover about 40% of the earth's land area and are primarily used for grazing. Despite their importance globally, there is a paucity of information on long-term grazing effects on the soil microbiome. We used a 68-year-old grazing experiment to determine differences in the soil permanganate-oxidizable C (POXC), microbial biomass C (MBC), the soil prokaryotic (bacterial and archaeal) community composition and enzyme activities between no-grazing, light grazing and heavy grazing, i.e. 0, 1.2 and 2.4 animal unit months (AUM) ha-1. The grazing effects were determined in spring and fall grazing. Light grazing had little effect on soil MBC and the composition and diversity of prokaryotic communities in either grazing season, but the effects of heavy grazing depended on the grazing season. In spring, heavy grazing increased the relative abundances of copiotrophic phyla Actinomycetota, Bacillota and Nitrososphaerota, along with soil POXC contents but decreased those of oligotrophic phyla Acidobacteriota, Verrucomicrobiota and Nitrospirota. This difference in responses was not observed in fall, when grazing reduced soil POXC, MBC and the relative abundances of most phyla. The β-diversity analysis showed that the prokaryotic community structure under heavy grazing was different from those in the control and light grazing treatments, and α-diversity indices (except the Shannon index) were highest under heavy grazing in both grazing seasons. The activities of P-mobilizing and S-mobilizing soil enzymes decreased with increasing cattle stocking rate in both seasons, but the activities of the enzymes that mediate C and N cycling decreased only in the fall. The genus RB41 (phylum Acidobacteriota) was one of two core bacterial genera, and its relative abundance was positively correlated with the activity of the S-mobilizing enzyme. Therefore, light grazing is recommended to reduce negative effects on the grassland soil microbiome and its activity, and the grazing season should be considered when evaluating such grazing effects.
期刊介绍:
We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms.
Topics include but are not limited to:
Antimicrobials and antimicrobial resistance
Bacteriology and parasitology
Biochemistry and biophysics
Biofilms and biological systems
Biotechnology and bioremediation
Cell biology and signalling
Chemical biology
Cross-disciplinary work
Ecology and environmental microbiology
Food microbiology
Genetics
Host–microbe interactions
Microbial methods and techniques
Microscopy and imaging
Omics, including genomics, proteomics and metabolomics
Physiology and metabolism
Systems biology and synthetic biology
The microbiome.