用于提高抗癌活性的负载多柔比星的核@壳钴铁氧体-钛酸钡磁电纳米纤维。

Khuram Shahzad, Muhammad Ali Abbasi, Muhammad Hassan Rafe, Anna Pestereva, Faheem Ullah, Muhammad Zaman, Muhammad Irfan, Muhammad Afzal, Anna Orlova
{"title":"用于提高抗癌活性的负载多柔比星的核@壳钴铁氧体-钛酸钡磁电纳米纤维。","authors":"Khuram Shahzad, Muhammad Ali Abbasi, Muhammad Hassan Rafe, Anna Pestereva, Faheem Ullah, Muhammad Zaman, Muhammad Irfan, Muhammad Afzal, Anna Orlova","doi":"10.1088/1748-605X/ad971e","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional drug delivery systems often suffer from non-specific distribution and limited therapeutic efficacy, leading to significant side effects. To address these challenges, we developed magnetoelectric, cobalt ferrite@barium titanate (CFO@BTO) nanofibers (NFs), with a core-shell structure for targeted anticancer drug delivery. The electrospinning method was employed to synthesize polymeric NFs based on magnetoelectric core-shell nanostructures. The scanning electron microscopy, transmission electron microscopy, x-ray diffraction and Vibrating sample magnetometer analysis confirmed the successful loading of nanostructures on polymeric NF, the core-shell morphology and magnetoelectric phase of CFO@BTO, respectively. UV-Vis spectroscopy was applied to verify the drug attachment, the optimization of drug release in an applied external magnetic field (MF), and the time required for control drug release. The effectiveness of MF-assisted controlled drug release was demonstrated by achieving a 95 ± 1.03% drug release from magnetoelectric NFs (MENFs) within 30 min under a MF of 4 mT.<i>In vitro</i>cytotoxicity assay on human skin cancer (SK-MEL-28) cell lines exhibited a maximum 90 ± 2% cytotoxicity with 2 ± 0.03 cm of drug loaded MENFs. Furthermore, the Hemolysis assay was carried out to affirm the biocompatibility and non-toxicity of drug loaded MENFs, which is suitable for anticancer therapy.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doxorubicin-loaded core@shell cobalt ferrite-barium titanate magnetoelectric nanofibers for improved anticancer activity.\",\"authors\":\"Khuram Shahzad, Muhammad Ali Abbasi, Muhammad Hassan Rafe, Anna Pestereva, Faheem Ullah, Muhammad Zaman, Muhammad Irfan, Muhammad Afzal, Anna Orlova\",\"doi\":\"10.1088/1748-605X/ad971e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional drug delivery systems often suffer from non-specific distribution and limited therapeutic efficacy, leading to significant side effects. To address these challenges, we developed magnetoelectric, cobalt ferrite@barium titanate (CFO@BTO) nanofibers (NFs), with a core-shell structure for targeted anticancer drug delivery. The electrospinning method was employed to synthesize polymeric NFs based on magnetoelectric core-shell nanostructures. The scanning electron microscopy, transmission electron microscopy, x-ray diffraction and Vibrating sample magnetometer analysis confirmed the successful loading of nanostructures on polymeric NF, the core-shell morphology and magnetoelectric phase of CFO@BTO, respectively. UV-Vis spectroscopy was applied to verify the drug attachment, the optimization of drug release in an applied external magnetic field (MF), and the time required for control drug release. The effectiveness of MF-assisted controlled drug release was demonstrated by achieving a 95 ± 1.03% drug release from magnetoelectric NFs (MENFs) within 30 min under a MF of 4 mT.<i>In vitro</i>cytotoxicity assay on human skin cancer (SK-MEL-28) cell lines exhibited a maximum 90 ± 2% cytotoxicity with 2 ± 0.03 cm of drug loaded MENFs. Furthermore, the Hemolysis assay was carried out to affirm the biocompatibility and non-toxicity of drug loaded MENFs, which is suitable for anticancer therapy.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ad971e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad971e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的给药系统往往存在非特异性分布和疗效有限的问题,从而导致严重的副作用。为了应对这些挑战,我们开发了具有核壳结构的磁电钴铁氧体@钛酸钡(CFO@BTO)纳米纤维,用于抗癌药物的靶向递送。采用电纺丝方法合成了基于磁电核壳纳米结构的聚合物纳米纤维。扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和振动样品磁力计(VSM)分析分别证实了纳米结构在聚合物纳米纤维上的成功负载、钴铁氧体@钛酸钡CFO@BTO的核壳形貌和磁电相。为了验证药物的附着情况、外加磁场中药物释放的优化情况以及控制药物释放所需的时间,使用了紫外可见光谱。在 4mT 的磁场下,磁电纳米纤维在 30 分钟内实现了 95 ± 1.03% 的药物释放,证明了磁场辅助药物控释的有效性。对人类皮肤癌(SK-MEL-28)细胞系进行的体外细胞毒性试验表明,2±0.03 cm 的磁电纳米纤维负载药物后,细胞毒性最高可达 90 ± 2%。此外,还进行了溶血试验,以确定载药 MENFs 的生物相容性和无毒性,适用于抗癌治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Doxorubicin-loaded core@shell cobalt ferrite-barium titanate magnetoelectric nanofibers for improved anticancer activity.

Conventional drug delivery systems often suffer from non-specific distribution and limited therapeutic efficacy, leading to significant side effects. To address these challenges, we developed magnetoelectric, cobalt ferrite@barium titanate (CFO@BTO) nanofibers (NFs), with a core-shell structure for targeted anticancer drug delivery. The electrospinning method was employed to synthesize polymeric NFs based on magnetoelectric core-shell nanostructures. The scanning electron microscopy, transmission electron microscopy, x-ray diffraction and Vibrating sample magnetometer analysis confirmed the successful loading of nanostructures on polymeric NF, the core-shell morphology and magnetoelectric phase of CFO@BTO, respectively. UV-Vis spectroscopy was applied to verify the drug attachment, the optimization of drug release in an applied external magnetic field (MF), and the time required for control drug release. The effectiveness of MF-assisted controlled drug release was demonstrated by achieving a 95 ± 1.03% drug release from magnetoelectric NFs (MENFs) within 30 min under a MF of 4 mT.In vitrocytotoxicity assay on human skin cancer (SK-MEL-28) cell lines exhibited a maximum 90 ± 2% cytotoxicity with 2 ± 0.03 cm of drug loaded MENFs. Furthermore, the Hemolysis assay was carried out to affirm the biocompatibility and non-toxicity of drug loaded MENFs, which is suitable for anticancer therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decellularized cartilage tissue bioink formulation for osteochondral graft development. Improvement of cellular pattern organization and clarity through centrifugal force. Response of a tenomodulin-positive subpopulation of human adipose-derived stem cells to decellularized tendon slices. Zinc-doped hydroxyapatite loaded chitosan gelatin nanocomposite scaffolds as a promising platform for bone regeneration. Construction of a multifunctional bio-probe based on lanthanides for UCL/MR/CT multimodal imaging in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1