{"title":"CA-GNN:面向流数据半监督学习的能力感知图神经网络","authors":"Hang Yu;Jiahao Wen;Yiping Sun;Xiao Wei;Jie Lu","doi":"10.1109/TCYB.2024.3489605","DOIUrl":null,"url":null,"abstract":"One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance because the graph structure can utilize the interactivity between surrounding nodes. However, graph-based SSL algorithms have two main limitations when applied to streaming data. First, not all the labels of the data in the streaming data may be reliable, and direct classification using a graph can lead to suboptimal performance. Second, graph-based SSL algorithms assume the structure of the graph is static, but the learning environment of streaming data is dynamic. Hence, we propose a competence-aware graph neural network (CA-GNN) to deal with these two limitations. Unlike other models, CA-GNN does not directly rely on graph information that could include mislabeled nodes. Instead, a competence model is used to explore latent semantic correlations in the streaming data and capture the reliability for each data. A streaming learning strategy then evolves CA-GNN’s parameters to capture the dynamism of the graph sequences. We conducted experiments using seven real datasets and four synthetic datasets, respectively, and compared the outcomes across various methods. The results demonstrate that CA-GNN classifies streaming data more effectively than the state-of-the-art (SOTA) methods.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 2","pages":"684-697"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CA-GNN: A Competence-Aware Graph Neural Network for Semi-Supervised Learning on Streaming Data\",\"authors\":\"Hang Yu;Jiahao Wen;Yiping Sun;Xiao Wei;Jie Lu\",\"doi\":\"10.1109/TCYB.2024.3489605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance because the graph structure can utilize the interactivity between surrounding nodes. However, graph-based SSL algorithms have two main limitations when applied to streaming data. First, not all the labels of the data in the streaming data may be reliable, and direct classification using a graph can lead to suboptimal performance. Second, graph-based SSL algorithms assume the structure of the graph is static, but the learning environment of streaming data is dynamic. Hence, we propose a competence-aware graph neural network (CA-GNN) to deal with these two limitations. Unlike other models, CA-GNN does not directly rely on graph information that could include mislabeled nodes. Instead, a competence model is used to explore latent semantic correlations in the streaming data and capture the reliability for each data. A streaming learning strategy then evolves CA-GNN’s parameters to capture the dynamism of the graph sequences. We conducted experiments using seven real datasets and four synthetic datasets, respectively, and compared the outcomes across various methods. The results demonstrate that CA-GNN classifies streaming data more effectively than the state-of-the-art (SOTA) methods.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"55 2\",\"pages\":\"684-697\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10767848/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10767848/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
CA-GNN: A Competence-Aware Graph Neural Network for Semi-Supervised Learning on Streaming Data
One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance because the graph structure can utilize the interactivity between surrounding nodes. However, graph-based SSL algorithms have two main limitations when applied to streaming data. First, not all the labels of the data in the streaming data may be reliable, and direct classification using a graph can lead to suboptimal performance. Second, graph-based SSL algorithms assume the structure of the graph is static, but the learning environment of streaming data is dynamic. Hence, we propose a competence-aware graph neural network (CA-GNN) to deal with these two limitations. Unlike other models, CA-GNN does not directly rely on graph information that could include mislabeled nodes. Instead, a competence model is used to explore latent semantic correlations in the streaming data and capture the reliability for each data. A streaming learning strategy then evolves CA-GNN’s parameters to capture the dynamism of the graph sequences. We conducted experiments using seven real datasets and four synthetic datasets, respectively, and compared the outcomes across various methods. The results demonstrate that CA-GNN classifies streaming data more effectively than the state-of-the-art (SOTA) methods.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.