CA-GNN:面向流数据半监督学习的能力感知图神经网络

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Cybernetics Pub Date : 2024-11-26 DOI:10.1109/TCYB.2024.3489605
Hang Yu;Jiahao Wen;Yiping Sun;Xiao Wei;Jie Lu
{"title":"CA-GNN:面向流数据半监督学习的能力感知图神经网络","authors":"Hang Yu;Jiahao Wen;Yiping Sun;Xiao Wei;Jie Lu","doi":"10.1109/TCYB.2024.3489605","DOIUrl":null,"url":null,"abstract":"One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance because the graph structure can utilize the interactivity between surrounding nodes. However, graph-based SSL algorithms have two main limitations when applied to streaming data. First, not all the labels of the data in the streaming data may be reliable, and direct classification using a graph can lead to suboptimal performance. Second, graph-based SSL algorithms assume the structure of the graph is static, but the learning environment of streaming data is dynamic. Hence, we propose a competence-aware graph neural network (CA-GNN) to deal with these two limitations. Unlike other models, CA-GNN does not directly rely on graph information that could include mislabeled nodes. Instead, a competence model is used to explore latent semantic correlations in the streaming data and capture the reliability for each data. A streaming learning strategy then evolves CA-GNN’s parameters to capture the dynamism of the graph sequences. We conducted experiments using seven real datasets and four synthetic datasets, respectively, and compared the outcomes across various methods. The results demonstrate that CA-GNN classifies streaming data more effectively than the state-of-the-art (SOTA) methods.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 2","pages":"684-697"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CA-GNN: A Competence-Aware Graph Neural Network for Semi-Supervised Learning on Streaming Data\",\"authors\":\"Hang Yu;Jiahao Wen;Yiping Sun;Xiao Wei;Jie Lu\",\"doi\":\"10.1109/TCYB.2024.3489605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance because the graph structure can utilize the interactivity between surrounding nodes. However, graph-based SSL algorithms have two main limitations when applied to streaming data. First, not all the labels of the data in the streaming data may be reliable, and direct classification using a graph can lead to suboptimal performance. Second, graph-based SSL algorithms assume the structure of the graph is static, but the learning environment of streaming data is dynamic. Hence, we propose a competence-aware graph neural network (CA-GNN) to deal with these two limitations. Unlike other models, CA-GNN does not directly rely on graph information that could include mislabeled nodes. Instead, a competence model is used to explore latent semantic correlations in the streaming data and capture the reliability for each data. A streaming learning strategy then evolves CA-GNN’s parameters to capture the dynamism of the graph sequences. We conducted experiments using seven real datasets and four synthetic datasets, respectively, and compared the outcomes across various methods. The results demonstrate that CA-GNN classifies streaming data more effectively than the state-of-the-art (SOTA) methods.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"55 2\",\"pages\":\"684-697\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10767848/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10767848/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CA-GNN: A Competence-Aware Graph Neural Network for Semi-Supervised Learning on Streaming Data
One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance because the graph structure can utilize the interactivity between surrounding nodes. However, graph-based SSL algorithms have two main limitations when applied to streaming data. First, not all the labels of the data in the streaming data may be reliable, and direct classification using a graph can lead to suboptimal performance. Second, graph-based SSL algorithms assume the structure of the graph is static, but the learning environment of streaming data is dynamic. Hence, we propose a competence-aware graph neural network (CA-GNN) to deal with these two limitations. Unlike other models, CA-GNN does not directly rely on graph information that could include mislabeled nodes. Instead, a competence model is used to explore latent semantic correlations in the streaming data and capture the reliability for each data. A streaming learning strategy then evolves CA-GNN’s parameters to capture the dynamism of the graph sequences. We conducted experiments using seven real datasets and four synthetic datasets, respectively, and compared the outcomes across various methods. The results demonstrate that CA-GNN classifies streaming data more effectively than the state-of-the-art (SOTA) methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
期刊最新文献
Event-/Self-Triggered Adaptive Optimal Consensus Control for Nonlinear Multiagent System With Unknown Dynamics and Disturbances Two-Stage Cooperation Multiobjective Evolutionary Algorithm Guided by Constraint-Sensitive Variables Relaxed Optimal Control With Self-Learning Horizon for Discrete-Time Stochastic Dynamics Dynamic Graph Representation Learning for Spatio-Temporal Neuroimaging Analysis Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1