{"title":"正弦微流体管中的电渗调制达西-布林克曼流:一种分析方法","authors":"Amalendu Rana","doi":"10.1108/hff-04-2024-0311","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This investigation is devoted to analyze the electroosmotic flow characteristics in a sinusoidal micropipe through a porous medium. This study aims to investigate the impact of surface waviness on Darcy–Brinkman flow in the presence of electroosmotic force, achieved through the unification of perturbation techniques.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Analytical approximate solutions for the governing flow equations are obtained through the utilization of a perturbation method.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The analytical study reveals that the periodic roughness on the surface of the micropipe generates periodic disturbances not only in the potential fields but also in the velocity profiles. An increase in the relative waviness of the pipe leads to the generation of corresponding waviness within the boundary layers of the flow. Surface waviness reduces the average velocity by increasing frictional resistance, while higher Darcy numbers and electroosmotic parameters lead to higher velocities by reducing flow resistance and enhancing electrokinetic forces, respectively. In addition, the presence of waviness introduces higher flow resistivity, contributing to an overall increase in the friction factor. Higher permeability in porous media induces boundary-layer reverse flows, resulting in elevated flow resistivity.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The current findings offer valuable insights for researchers in biomedical engineering and related fields. The author’s discoveries have the potential to drive advancements in microfluidic systems, benefiting various domains. These include optimizing drug delivery in biomedical devices, improving blood filtration applications and enhancing the efficiency of fluid transport in porous media for engineering applications.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"257 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electroosmosis-modulated Darcy–Brinkman flow in sinusoidal microfluidic pipe: an analytical approach\",\"authors\":\"Amalendu Rana\",\"doi\":\"10.1108/hff-04-2024-0311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This investigation is devoted to analyze the electroosmotic flow characteristics in a sinusoidal micropipe through a porous medium. This study aims to investigate the impact of surface waviness on Darcy–Brinkman flow in the presence of electroosmotic force, achieved through the unification of perturbation techniques.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Analytical approximate solutions for the governing flow equations are obtained through the utilization of a perturbation method.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The analytical study reveals that the periodic roughness on the surface of the micropipe generates periodic disturbances not only in the potential fields but also in the velocity profiles. An increase in the relative waviness of the pipe leads to the generation of corresponding waviness within the boundary layers of the flow. Surface waviness reduces the average velocity by increasing frictional resistance, while higher Darcy numbers and electroosmotic parameters lead to higher velocities by reducing flow resistance and enhancing electrokinetic forces, respectively. In addition, the presence of waviness introduces higher flow resistivity, contributing to an overall increase in the friction factor. Higher permeability in porous media induces boundary-layer reverse flows, resulting in elevated flow resistivity.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The current findings offer valuable insights for researchers in biomedical engineering and related fields. The author’s discoveries have the potential to drive advancements in microfluidic systems, benefiting various domains. These include optimizing drug delivery in biomedical devices, improving blood filtration applications and enhancing the efficiency of fluid transport in porous media for engineering applications.</p><!--/ Abstract__block -->\",\"PeriodicalId\":14263,\"journal\":{\"name\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"volume\":\"257 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/hff-04-2024-0311\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-04-2024-0311","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Electroosmosis-modulated Darcy–Brinkman flow in sinusoidal microfluidic pipe: an analytical approach
Purpose
This investigation is devoted to analyze the electroosmotic flow characteristics in a sinusoidal micropipe through a porous medium. This study aims to investigate the impact of surface waviness on Darcy–Brinkman flow in the presence of electroosmotic force, achieved through the unification of perturbation techniques.
Design/methodology/approach
Analytical approximate solutions for the governing flow equations are obtained through the utilization of a perturbation method.
Findings
The analytical study reveals that the periodic roughness on the surface of the micropipe generates periodic disturbances not only in the potential fields but also in the velocity profiles. An increase in the relative waviness of the pipe leads to the generation of corresponding waviness within the boundary layers of the flow. Surface waviness reduces the average velocity by increasing frictional resistance, while higher Darcy numbers and electroosmotic parameters lead to higher velocities by reducing flow resistance and enhancing electrokinetic forces, respectively. In addition, the presence of waviness introduces higher flow resistivity, contributing to an overall increase in the friction factor. Higher permeability in porous media induces boundary-layer reverse flows, resulting in elevated flow resistivity.
Originality/value
The current findings offer valuable insights for researchers in biomedical engineering and related fields. The author’s discoveries have the potential to drive advancements in microfluidic systems, benefiting various domains. These include optimizing drug delivery in biomedical devices, improving blood filtration applications and enhancing the efficiency of fluid transport in porous media for engineering applications.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf