雷德贝格原子阵列上的数模量子学习

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2024-11-27 DOI:10.1088/2058-9565/ad9177
Jonathan Z Lu, Lucy Jiao, Kristina Wolinski, Milan Kornjača, Hong-Ye Hu, Sergio Cantu, Fangli Liu, Susanne F Yelin and Sheng-Tao Wang
{"title":"雷德贝格原子阵列上的数模量子学习","authors":"Jonathan Z Lu, Lucy Jiao, Kristina Wolinski, Milan Kornjača, Hong-Ye Hu, Sergio Cantu, Fangli Liu, Susanne F Yelin and Sheng-Tao Wang","doi":"10.1088/2058-9565/ad9177","DOIUrl":null,"url":null,"abstract":"We propose hybrid digital–analog (DA) learning algorithms on Rydberg atom arrays, combining the potentially practical utility and near-term realizability of quantum learning with the rapidly scaling architectures of neutral atoms. Our construction requires only single-qubit operations in the digital setting and global driving according to the Rydberg Hamiltonian in the analog setting. We perform a comprehensive numerical study of our algorithm on both classical and quantum data, given respectively by handwritten digit classification and unsupervised quantum phase boundary learning. We show in the two representative problems that DA learning is not only feasible in the near term, but also requires shorter circuit depths and is more robust to realistic error models as compared to digital learning schemes. Our results suggest that DA learning opens a promising path towards improved variational quantum learning experiments in the near term.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"3 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital–analog quantum learning on Rydberg atom arrays\",\"authors\":\"Jonathan Z Lu, Lucy Jiao, Kristina Wolinski, Milan Kornjača, Hong-Ye Hu, Sergio Cantu, Fangli Liu, Susanne F Yelin and Sheng-Tao Wang\",\"doi\":\"10.1088/2058-9565/ad9177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose hybrid digital–analog (DA) learning algorithms on Rydberg atom arrays, combining the potentially practical utility and near-term realizability of quantum learning with the rapidly scaling architectures of neutral atoms. Our construction requires only single-qubit operations in the digital setting and global driving according to the Rydberg Hamiltonian in the analog setting. We perform a comprehensive numerical study of our algorithm on both classical and quantum data, given respectively by handwritten digit classification and unsupervised quantum phase boundary learning. We show in the two representative problems that DA learning is not only feasible in the near term, but also requires shorter circuit depths and is more robust to realistic error models as compared to digital learning schemes. Our results suggest that DA learning opens a promising path towards improved variational quantum learning experiments in the near term.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad9177\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad9177","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了雷德贝格原子阵列上的混合数模(DA)学习算法,将量子学习的潜在实用性和近期可实现性与中性原子的快速扩展架构相结合。我们的结构在数字环境中只需要单量子比特操作,在模拟环境中则需要根据雷德贝格哈密顿进行全局驱动。我们在经典数据和量子数据上对我们的算法进行了全面的数值研究,分别给出了手写数字分类和无监督量子相边界学习。我们在这两个具有代表性的问题中表明,与数字学习方案相比,DA 学习不仅在短期内可行,而且所需的电路深度更短,对现实错误模型的鲁棒性更高。我们的研究结果表明,DA 学习为在短期内改进变分量子学习实验开辟了一条充满希望的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital–analog quantum learning on Rydberg atom arrays
We propose hybrid digital–analog (DA) learning algorithms on Rydberg atom arrays, combining the potentially practical utility and near-term realizability of quantum learning with the rapidly scaling architectures of neutral atoms. Our construction requires only single-qubit operations in the digital setting and global driving according to the Rydberg Hamiltonian in the analog setting. We perform a comprehensive numerical study of our algorithm on both classical and quantum data, given respectively by handwritten digit classification and unsupervised quantum phase boundary learning. We show in the two representative problems that DA learning is not only feasible in the near term, but also requires shorter circuit depths and is more robust to realistic error models as compared to digital learning schemes. Our results suggest that DA learning opens a promising path towards improved variational quantum learning experiments in the near term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
Digital–analog quantum learning on Rydberg atom arrays Planar scanning probe microscopy enables vector magnetic field imaging at the nanoscale Quantum-inspired attribute selection algorithms Quantum state tomography based on infidelity estimation Near-optimal quantum kernel principal component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1