Jiating Li, Yufeng Ge, Laila A. Puntel, Derek M. Heeren, Geng Bai, Guillermo R. Balboa, John A. Gamon, Timothy J. Arkebauer, Yeyin Shi
{"title":"利用无人机高光谱图像设计复杂田间条件下的玉米氮胁迫优化指数","authors":"Jiating Li, Yufeng Ge, Laila A. Puntel, Derek M. Heeren, Geng Bai, Guillermo R. Balboa, John A. Gamon, Timothy J. Arkebauer, Yeyin Shi","doi":"10.1007/s11119-024-10205-1","DOIUrl":null,"url":null,"abstract":"<p>Nitrogen Sufficiency Index (NSI) is an important nitrogen (N) stress indicator for precision N management. It is usually calculated using variables such as leaf chlorophyll meter readings (SPAD) and vegetation indices (VIs). However, no consensus has been reached on the most preferred variable. Additionally, conventional NSI (NSI<sub>uni</sub>) calculation assumes N being the sole yield-limiting factor, neglecting other factors such as soil water variability. To tackle these issues, this study compared various variables for NSI calculation and evaluated two new N stress indicators in minimizing the impact of confounding water treatment. The following ground- and aerial-derived variables were compared for NSI<sub>uni</sub> calculation: SPAD, sampled leaf and canopy N content (LNC, CNC), LNC and CNC estimated using hyperspectral images acquired by an Unmanned Aerial Vehicle, and three VIs (Normalized Difference Vegetation Index (NDVI), Normalized Red Edge Index (NDRE), and Chlorophyll Index) from the hyperspectral images. Results demonstrated that ground-measured variables outperformed aerial-based variables in deriving N-responsive NSI. Especially, LNC derived NSI<sub>uni</sub> responded to N treatment significantly in ten out of thirteen site-date datasets. For the second objective, a modified NSI (NSI<sub>w</sub>) and the NDRE/NDVI ratio were compared to NSI<sub>uni</sub>. NSI<sub>w</sub> reduced water treatment effects in over 80% of the datasets where NSI<sub>uni</sub> showed evident impacts. NDRE/NDVI performed similarly to NSI<sub>w</sub>, with the notable advantage of not requiring prior knowledge of soil water spatial distribution. This research pioneers the optimization of N stress indicators by identifying the best variables for NSI and mitigating the effects of soil water variability. These advancements significantly contribute to precision N management in complex field conditions.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"53 5 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Devising optimized maize nitrogen stress indices in complex field conditions from UAV hyperspectral imagery\",\"authors\":\"Jiating Li, Yufeng Ge, Laila A. Puntel, Derek M. Heeren, Geng Bai, Guillermo R. Balboa, John A. Gamon, Timothy J. Arkebauer, Yeyin Shi\",\"doi\":\"10.1007/s11119-024-10205-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nitrogen Sufficiency Index (NSI) is an important nitrogen (N) stress indicator for precision N management. It is usually calculated using variables such as leaf chlorophyll meter readings (SPAD) and vegetation indices (VIs). However, no consensus has been reached on the most preferred variable. Additionally, conventional NSI (NSI<sub>uni</sub>) calculation assumes N being the sole yield-limiting factor, neglecting other factors such as soil water variability. To tackle these issues, this study compared various variables for NSI calculation and evaluated two new N stress indicators in minimizing the impact of confounding water treatment. The following ground- and aerial-derived variables were compared for NSI<sub>uni</sub> calculation: SPAD, sampled leaf and canopy N content (LNC, CNC), LNC and CNC estimated using hyperspectral images acquired by an Unmanned Aerial Vehicle, and three VIs (Normalized Difference Vegetation Index (NDVI), Normalized Red Edge Index (NDRE), and Chlorophyll Index) from the hyperspectral images. Results demonstrated that ground-measured variables outperformed aerial-based variables in deriving N-responsive NSI. Especially, LNC derived NSI<sub>uni</sub> responded to N treatment significantly in ten out of thirteen site-date datasets. For the second objective, a modified NSI (NSI<sub>w</sub>) and the NDRE/NDVI ratio were compared to NSI<sub>uni</sub>. NSI<sub>w</sub> reduced water treatment effects in over 80% of the datasets where NSI<sub>uni</sub> showed evident impacts. NDRE/NDVI performed similarly to NSI<sub>w</sub>, with the notable advantage of not requiring prior knowledge of soil water spatial distribution. This research pioneers the optimization of N stress indicators by identifying the best variables for NSI and mitigating the effects of soil water variability. These advancements significantly contribute to precision N management in complex field conditions.</p>\",\"PeriodicalId\":20423,\"journal\":{\"name\":\"Precision Agriculture\",\"volume\":\"53 5 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11119-024-10205-1\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10205-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Devising optimized maize nitrogen stress indices in complex field conditions from UAV hyperspectral imagery
Nitrogen Sufficiency Index (NSI) is an important nitrogen (N) stress indicator for precision N management. It is usually calculated using variables such as leaf chlorophyll meter readings (SPAD) and vegetation indices (VIs). However, no consensus has been reached on the most preferred variable. Additionally, conventional NSI (NSIuni) calculation assumes N being the sole yield-limiting factor, neglecting other factors such as soil water variability. To tackle these issues, this study compared various variables for NSI calculation and evaluated two new N stress indicators in minimizing the impact of confounding water treatment. The following ground- and aerial-derived variables were compared for NSIuni calculation: SPAD, sampled leaf and canopy N content (LNC, CNC), LNC and CNC estimated using hyperspectral images acquired by an Unmanned Aerial Vehicle, and three VIs (Normalized Difference Vegetation Index (NDVI), Normalized Red Edge Index (NDRE), and Chlorophyll Index) from the hyperspectral images. Results demonstrated that ground-measured variables outperformed aerial-based variables in deriving N-responsive NSI. Especially, LNC derived NSIuni responded to N treatment significantly in ten out of thirteen site-date datasets. For the second objective, a modified NSI (NSIw) and the NDRE/NDVI ratio were compared to NSIuni. NSIw reduced water treatment effects in over 80% of the datasets where NSIuni showed evident impacts. NDRE/NDVI performed similarly to NSIw, with the notable advantage of not requiring prior knowledge of soil water spatial distribution. This research pioneers the optimization of N stress indicators by identifying the best variables for NSI and mitigating the effects of soil water variability. These advancements significantly contribute to precision N management in complex field conditions.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.