{"title":"具有应变可调微波衰减和屏蔽功能的机械介电优化石墨烯气凝胶","authors":"Yijing Zhao, Nasir Ahmad, Yong Yang, Wei Zhai","doi":"10.1039/d4ta06820c","DOIUrl":null,"url":null,"abstract":"The widespread use of electronic devices significantly improves human activities but also raises concerns about microwave radiation pollution, creating a demand for materials that can effectively attenuate or shield against this radiation. To address this, we have developed innovative graphene aerogels (SCGAs) that incorporate SiC nanowires and carbon nanotubes, featuring a nature-inspired bridge-lamellar microstructure. These aerogels are optimized for both dielectric and mechanical properties, allowing for strain-tunable microwave attenuation and shielding functions. Specifically, our SCGAs demonstrate excellent microwave attenuation, with a minimum reflection loss of −51.6 dB and an effective attenuation bandwidth of 7.62 GHz, and can shift to a shielding mode with a shielding effectiveness of approximately 50.1 dB when compressed to 80%. This strain-responsive behavior remains stable over time, showing minimal degradation even after 1000 compression cycles, indicating exceptional long-term durability. Additionally, the strain-gradient strategy allows for customized low-reflection shielding applications, and the ceramic/carbon composition ensures superior resistance to harsh environmental conditions. Our research introduces a novel solution that provides effective microwave radiation protection across a broad frequency range and holds promise for various high-tech applications.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"22 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical-dielectric optimized graphene aerogels with strain-tunable microwave attenuation and shielding functions\",\"authors\":\"Yijing Zhao, Nasir Ahmad, Yong Yang, Wei Zhai\",\"doi\":\"10.1039/d4ta06820c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread use of electronic devices significantly improves human activities but also raises concerns about microwave radiation pollution, creating a demand for materials that can effectively attenuate or shield against this radiation. To address this, we have developed innovative graphene aerogels (SCGAs) that incorporate SiC nanowires and carbon nanotubes, featuring a nature-inspired bridge-lamellar microstructure. These aerogels are optimized for both dielectric and mechanical properties, allowing for strain-tunable microwave attenuation and shielding functions. Specifically, our SCGAs demonstrate excellent microwave attenuation, with a minimum reflection loss of −51.6 dB and an effective attenuation bandwidth of 7.62 GHz, and can shift to a shielding mode with a shielding effectiveness of approximately 50.1 dB when compressed to 80%. This strain-responsive behavior remains stable over time, showing minimal degradation even after 1000 compression cycles, indicating exceptional long-term durability. Additionally, the strain-gradient strategy allows for customized low-reflection shielding applications, and the ceramic/carbon composition ensures superior resistance to harsh environmental conditions. Our research introduces a novel solution that provides effective microwave radiation protection across a broad frequency range and holds promise for various high-tech applications.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta06820c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06820c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mechanical-dielectric optimized graphene aerogels with strain-tunable microwave attenuation and shielding functions
The widespread use of electronic devices significantly improves human activities but also raises concerns about microwave radiation pollution, creating a demand for materials that can effectively attenuate or shield against this radiation. To address this, we have developed innovative graphene aerogels (SCGAs) that incorporate SiC nanowires and carbon nanotubes, featuring a nature-inspired bridge-lamellar microstructure. These aerogels are optimized for both dielectric and mechanical properties, allowing for strain-tunable microwave attenuation and shielding functions. Specifically, our SCGAs demonstrate excellent microwave attenuation, with a minimum reflection loss of −51.6 dB and an effective attenuation bandwidth of 7.62 GHz, and can shift to a shielding mode with a shielding effectiveness of approximately 50.1 dB when compressed to 80%. This strain-responsive behavior remains stable over time, showing minimal degradation even after 1000 compression cycles, indicating exceptional long-term durability. Additionally, the strain-gradient strategy allows for customized low-reflection shielding applications, and the ceramic/carbon composition ensures superior resistance to harsh environmental conditions. Our research introduces a novel solution that provides effective microwave radiation protection across a broad frequency range and holds promise for various high-tech applications.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.