Hao Chen, Zan Lian, Xiao Zhao, Jiawei Wan, Priscilla F. Pieters, Judit Oliver-Meseguer, Ji Yang, Elzbieta Pach, Sophie Carenco, Laureline Treps, Nikos Liakakos, Yu Shan, Virginia Altoe, Ed Wong, Zengqing Zhuo, Feipeng Yang, Ji Su, Jinghua Guo, Monika Blum, Saul H. Lapidus, Adrian Hunt, Iradwikanari Waluyo, Hirohito Ogasawara, Haimei Zheng, Peidong Yang, Alexis T. Bell, Núria López, Miquel Salmeron
{"title":"锰在通过费托合成选择性生产长链烃的 CoMnOx 催化剂中的作用","authors":"Hao Chen, Zan Lian, Xiao Zhao, Jiawei Wan, Priscilla F. Pieters, Judit Oliver-Meseguer, Ji Yang, Elzbieta Pach, Sophie Carenco, Laureline Treps, Nikos Liakakos, Yu Shan, Virginia Altoe, Ed Wong, Zengqing Zhuo, Feipeng Yang, Ji Su, Jinghua Guo, Monika Blum, Saul H. Lapidus, Adrian Hunt, Iradwikanari Waluyo, Hirohito Ogasawara, Haimei Zheng, Peidong Yang, Alexis T. Bell, Núria López, Miquel Salmeron","doi":"10.1038/s41467-024-54578-3","DOIUrl":null,"url":null,"abstract":"<p>Cobalt is an efficient catalyst for Fischer−Tropsch synthesis (FTS) of hydrocarbons from syngas (CO + H<sub>2</sub>) with enhanced selectivity for long-chain hydrocarbons when promoted by Manganese. However, the molecular scale origin of the enhancement remains unclear. Here we present an experimental and theoretical study using model catalysts consisting of crystalline CoMnO<sub>x</sub> nanoparticles and thin films, where Co and Mn are mixed at the sub-nm scale. Employing TEM and in-situ X-ray spectroscopies (XRD, APXPS, and XAS), we determine the catalyst’s atomic structure, chemical state, reactive species, and their evolution under FTS conditions. We show the concentration of CH<sub>x</sub>, the key intermediates, increases rapidly on CoMnO<sub>x</sub>, while no increase occurs without Mn. DFT simulations reveal that basic O sites in CoMnO<sub>x</sub> bind hydrogen atoms resulting from H<sub>2</sub> dissociation on Co<sup>0</sup> sites, making them less available to react with CH<sub>x</sub> intermediates, thus hindering chain termination reactions, which promotes the formation of long-chain hydrocarbons.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"3 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of manganese in CoMnOx catalysts for selective long-chain hydrocarbon production via Fischer-Tropsch synthesis\",\"authors\":\"Hao Chen, Zan Lian, Xiao Zhao, Jiawei Wan, Priscilla F. Pieters, Judit Oliver-Meseguer, Ji Yang, Elzbieta Pach, Sophie Carenco, Laureline Treps, Nikos Liakakos, Yu Shan, Virginia Altoe, Ed Wong, Zengqing Zhuo, Feipeng Yang, Ji Su, Jinghua Guo, Monika Blum, Saul H. Lapidus, Adrian Hunt, Iradwikanari Waluyo, Hirohito Ogasawara, Haimei Zheng, Peidong Yang, Alexis T. Bell, Núria López, Miquel Salmeron\",\"doi\":\"10.1038/s41467-024-54578-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cobalt is an efficient catalyst for Fischer−Tropsch synthesis (FTS) of hydrocarbons from syngas (CO + H<sub>2</sub>) with enhanced selectivity for long-chain hydrocarbons when promoted by Manganese. However, the molecular scale origin of the enhancement remains unclear. Here we present an experimental and theoretical study using model catalysts consisting of crystalline CoMnO<sub>x</sub> nanoparticles and thin films, where Co and Mn are mixed at the sub-nm scale. Employing TEM and in-situ X-ray spectroscopies (XRD, APXPS, and XAS), we determine the catalyst’s atomic structure, chemical state, reactive species, and their evolution under FTS conditions. We show the concentration of CH<sub>x</sub>, the key intermediates, increases rapidly on CoMnO<sub>x</sub>, while no increase occurs without Mn. DFT simulations reveal that basic O sites in CoMnO<sub>x</sub> bind hydrogen atoms resulting from H<sub>2</sub> dissociation on Co<sup>0</sup> sites, making them less available to react with CH<sub>x</sub> intermediates, thus hindering chain termination reactions, which promotes the formation of long-chain hydrocarbons.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54578-3\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54578-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
钴是一种从合成气(CO + H2)中合成碳氢化合物的高效费托合成(FTS)催化剂,在锰的促进下,长链碳氢化合物的选择性增强。然而,这种提高的分子尺度来源仍不清楚。在此,我们使用由结晶 CoMnOx 纳米颗粒和薄膜组成的模型催化剂进行了实验和理论研究,其中 Co 和 Mn 在亚纳米尺度上混合。利用 TEM 和原位 X 射线光谱(XRD、APXPS 和 XAS),我们确定了催化剂的原子结构、化学状态、活性物种及其在 FTS 条件下的演变。我们发现,关键中间产物 CHx 的浓度在 CoMnOx 上迅速增加,而在不含 Mn 的情况下则没有增加。DFT 模拟显示,CoMnOx 中的碱性 O 位点结合了 Co0 位点上 H2 离解产生的氢原子,使其无法与 CHx 中间体发生反应,从而阻碍了链终止反应,促进了长链烃的形成。
The role of manganese in CoMnOx catalysts for selective long-chain hydrocarbon production via Fischer-Tropsch synthesis
Cobalt is an efficient catalyst for Fischer−Tropsch synthesis (FTS) of hydrocarbons from syngas (CO + H2) with enhanced selectivity for long-chain hydrocarbons when promoted by Manganese. However, the molecular scale origin of the enhancement remains unclear. Here we present an experimental and theoretical study using model catalysts consisting of crystalline CoMnOx nanoparticles and thin films, where Co and Mn are mixed at the sub-nm scale. Employing TEM and in-situ X-ray spectroscopies (XRD, APXPS, and XAS), we determine the catalyst’s atomic structure, chemical state, reactive species, and their evolution under FTS conditions. We show the concentration of CHx, the key intermediates, increases rapidly on CoMnOx, while no increase occurs without Mn. DFT simulations reveal that basic O sites in CoMnOx bind hydrogen atoms resulting from H2 dissociation on Co0 sites, making them less available to react with CHx intermediates, thus hindering chain termination reactions, which promotes the formation of long-chain hydrocarbons.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.