均值场 LQG 社会优化:强化学习方法

IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Automatica Pub Date : 2024-11-26 DOI:10.1016/j.automatica.2024.111924
Zhenhui Xu , Bing-Chang Wang , Tielong Shen
{"title":"均值场 LQG 社会优化:强化学习方法","authors":"Zhenhui Xu ,&nbsp;Bing-Chang Wang ,&nbsp;Tielong Shen","doi":"10.1016/j.automatica.2024.111924","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel model-free method to solve linear quadratic Gaussian mean field social control problems in the presence of multiplicative noise. The objective is to achieve a social optimum by solving two algebraic Riccati equations (AREs) and determining a mean field (MF) state, both without requiring prior knowledge of individual system dynamics for all agents. In the proposed approach, we first employ integral reinforcement learning techniques to develop two model-free iterative equations that converge to solutions for the stochastic ARE and the induced indefinite ARE respectively. Then, the MF state is approximated, either through the Monte Carlo method with the obtained gain matrices or through the system identification with the measured data. Notably, a unified state and input samples collected from a single agent are used in both iterations and identification procedure, making the method more computationally efficient and scalable. Finally, a numerical example is given to demonstrate the effectiveness of the proposed algorithm.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"172 ","pages":"Article 111924"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean field LQG social optimization: A reinforcement learning approach\",\"authors\":\"Zhenhui Xu ,&nbsp;Bing-Chang Wang ,&nbsp;Tielong Shen\",\"doi\":\"10.1016/j.automatica.2024.111924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel model-free method to solve linear quadratic Gaussian mean field social control problems in the presence of multiplicative noise. The objective is to achieve a social optimum by solving two algebraic Riccati equations (AREs) and determining a mean field (MF) state, both without requiring prior knowledge of individual system dynamics for all agents. In the proposed approach, we first employ integral reinforcement learning techniques to develop two model-free iterative equations that converge to solutions for the stochastic ARE and the induced indefinite ARE respectively. Then, the MF state is approximated, either through the Monte Carlo method with the obtained gain matrices or through the system identification with the measured data. Notably, a unified state and input samples collected from a single agent are used in both iterations and identification procedure, making the method more computationally efficient and scalable. Finally, a numerical example is given to demonstrate the effectiveness of the proposed algorithm.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"172 \",\"pages\":\"Article 111924\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109824004187\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824004187","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的无模型方法,用于解决存在乘法噪声的线性二次高斯均值场社会控制问题。其目标是通过求解两个代数里卡提方程(ARE)和确定平均场(MF)状态来实现社会最优,而这两者都不需要事先了解所有代理的个体系统动态。在所提出的方法中,我们首先采用积分强化学习技术来建立两个无模型迭代方程,分别收敛到随机里卡第方程和诱导不定里卡第方程的解。然后,利用获得的增益矩阵通过蒙特卡罗方法或通过测量数据进行系统识别来近似 MF 状态。值得注意的是,在迭代和识别过程中都使用了统一的状态和从单个代理收集的输入样本,这使得该方法的计算效率更高,可扩展性更强。最后,我们给出了一个数值示例来证明所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mean field LQG social optimization: A reinforcement learning approach
This paper presents a novel model-free method to solve linear quadratic Gaussian mean field social control problems in the presence of multiplicative noise. The objective is to achieve a social optimum by solving two algebraic Riccati equations (AREs) and determining a mean field (MF) state, both without requiring prior knowledge of individual system dynamics for all agents. In the proposed approach, we first employ integral reinforcement learning techniques to develop two model-free iterative equations that converge to solutions for the stochastic ARE and the induced indefinite ARE respectively. Then, the MF state is approximated, either through the Monte Carlo method with the obtained gain matrices or through the system identification with the measured data. Notably, a unified state and input samples collected from a single agent are used in both iterations and identification procedure, making the method more computationally efficient and scalable. Finally, a numerical example is given to demonstrate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatica
Automatica 工程技术-工程:电子与电气
CiteScore
10.70
自引率
7.80%
发文量
617
审稿时长
5 months
期刊介绍: Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field. After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience. Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.
期刊最新文献
Mean field LQG social optimization: A reinforcement learning approach Variational unscented Kalman filter on matrix Lie groups Reduced-order identification methods: Hierarchical algorithm or variable elimination algorithm Resilient stepped transmission and control for nonlinear systems against DoS attacks A joint diagnoser approach for diagnosability of discrete event systems under attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1