降阶识别方法:层次算法或变量消除算法

IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Automatica Pub Date : 2024-11-26 DOI:10.1016/j.automatica.2024.111991
Jing Chen , Yawen Mao , Dongqing Wang , Min Gan , Quanmin Zhu , Feng Liu
{"title":"降阶识别方法:层次算法或变量消除算法","authors":"Jing Chen ,&nbsp;Yawen Mao ,&nbsp;Dongqing Wang ,&nbsp;Min Gan ,&nbsp;Quanmin Zhu ,&nbsp;Feng Liu","doi":"10.1016/j.automatica.2024.111991","DOIUrl":null,"url":null,"abstract":"<div><div>Reduced-order identification algorithms are usually used in machine learning and big data technologies, where the large-scale systems widely exist. For large-scale system identification, traditional least squares algorithm involves high-order matrix inverse calculation, while traditional gradient descent algorithm has slow convergence rates. The reduced-order algorithm proposed in this paper has some advantages over the previous work: (1) via sequential partitioning of the parameter vector, the calculation of the inverse of a high-order matrix can be reduced to low-order matrix inverse calculations; (2) has a better conditioned information matrix than that of the gradient descent algorithm, thus has faster convergence rates; (3) its convergence rates can be increased by using the Aitken acceleration method, therefore the reduced-order based Aitken algorithm is at least quadratic convergent and has no limitation on the step-size. The properties of the reduced-order algorithm are also given. Simulation results demonstrate the effectiveness of the proposed algorithm.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"172 ","pages":"Article 111991"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced-order identification methods: Hierarchical algorithm or variable elimination algorithm\",\"authors\":\"Jing Chen ,&nbsp;Yawen Mao ,&nbsp;Dongqing Wang ,&nbsp;Min Gan ,&nbsp;Quanmin Zhu ,&nbsp;Feng Liu\",\"doi\":\"10.1016/j.automatica.2024.111991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reduced-order identification algorithms are usually used in machine learning and big data technologies, where the large-scale systems widely exist. For large-scale system identification, traditional least squares algorithm involves high-order matrix inverse calculation, while traditional gradient descent algorithm has slow convergence rates. The reduced-order algorithm proposed in this paper has some advantages over the previous work: (1) via sequential partitioning of the parameter vector, the calculation of the inverse of a high-order matrix can be reduced to low-order matrix inverse calculations; (2) has a better conditioned information matrix than that of the gradient descent algorithm, thus has faster convergence rates; (3) its convergence rates can be increased by using the Aitken acceleration method, therefore the reduced-order based Aitken algorithm is at least quadratic convergent and has no limitation on the step-size. The properties of the reduced-order algorithm are also given. Simulation results demonstrate the effectiveness of the proposed algorithm.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"172 \",\"pages\":\"Article 111991\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109824004850\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824004850","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

大规模系统广泛存在于机器学习和大数据技术中,而降阶识别算法通常被应用于这些领域。对于大规模系统识别,传统的最小二乘算法涉及高阶矩阵求逆计算,而传统的梯度下降算法收敛速度较慢。本文提出的降阶算法与前人的研究相比具有以下优点:(1)通过对参数向量的顺序分割,可以将高阶矩阵的逆计算简化为低阶矩阵的逆计算;(2)与梯度下降算法相比,降阶算法具有更好的条件信息矩阵,因此收敛速度更快;(3)通过使用艾特肯加速方法可以提高其收敛速度,因此基于降阶的艾特肯算法至少具有二次收敛性,且对步长没有限制。本文还给出了降阶算法的特性。仿真结果证明了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduced-order identification methods: Hierarchical algorithm or variable elimination algorithm
Reduced-order identification algorithms are usually used in machine learning and big data technologies, where the large-scale systems widely exist. For large-scale system identification, traditional least squares algorithm involves high-order matrix inverse calculation, while traditional gradient descent algorithm has slow convergence rates. The reduced-order algorithm proposed in this paper has some advantages over the previous work: (1) via sequential partitioning of the parameter vector, the calculation of the inverse of a high-order matrix can be reduced to low-order matrix inverse calculations; (2) has a better conditioned information matrix than that of the gradient descent algorithm, thus has faster convergence rates; (3) its convergence rates can be increased by using the Aitken acceleration method, therefore the reduced-order based Aitken algorithm is at least quadratic convergent and has no limitation on the step-size. The properties of the reduced-order algorithm are also given. Simulation results demonstrate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatica
Automatica 工程技术-工程:电子与电气
CiteScore
10.70
自引率
7.80%
发文量
617
审稿时长
5 months
期刊介绍: Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field. After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience. Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.
期刊最新文献
Model-based state estimation for Euler–Lagrange systems and rigid-body robot control On converse zeroing barrier functions Stochastic encryption against stealthy attacks in CPSs: A zero-sum game approach Identification of FIR Systems with binary-valued observations under replay attacks Mean field LQG social optimization: A reinforcement learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1