{"title":"基于 CRISPR/Cas9 靶向测序的肺炎链球菌血清分型新方法","authors":"Yustinus Maladan , Endah Retnaningrum , Budi Setiadi Daryono , Rosantia Sarassari , Ratna Fathma Sari , Sarah Azhari Balqis , Ghina Athyah Wahid , Dodi Safari","doi":"10.1016/j.jmoldx.2024.08.009","DOIUrl":null,"url":null,"abstract":"<div><div>Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) application for targeted sequencing has made a breakthrough in the genomic research era. High diversity in the capsular polysaccharide (<em>cps</em>) locus of <em>Streptococcus pneumoniae</em> has hampered identification of the serotype. This study developed a new serotyping method for <em>S. pneumoniae</em> using CRISPR/Cas9–targeted sequencing with the Oxford Nanopore Technologies platform. A probe was designed at the position of the <em>cps</em> locus using an excision approach on two sides flanking genes between the <em>dexB</em> and <em>aliA</em> genes with approximately 20 kb. A native barcoding method was used for multiplexing. The probe will attach to a specific side followed by attachment of CRISPR/Cas9 to cut the recognition area. The study used <em>de novo</em> assembly to reconstruct sequence reads, which were analyzed using PneumoCRISPR, a new serotyping pipeline for Oxford Nanopore Technologies sequencing data output. Four CRISPR/Cas9 probes have been designed and recognize the <em>cps</em> locus of <em>S. pneumoniae</em>. Serotyping results align precisely with serotyping data from whole-genome sequencing. This serotyping method also allows researchers to use multiple samples in a single run. The new serotyping method based on CRISPR/Cas9–targeted sequencing holds immense promise for serotype identification of <em>S. pneumoniae</em>.</div></div>","PeriodicalId":50128,"journal":{"name":"Journal of Molecular Diagnostics","volume":"26 12","pages":"Pages 1045-1054"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Serotyping Method of Streptococcus pneumoniae Based on CRISPR/Cas9–Targeted Sequencing\",\"authors\":\"Yustinus Maladan , Endah Retnaningrum , Budi Setiadi Daryono , Rosantia Sarassari , Ratna Fathma Sari , Sarah Azhari Balqis , Ghina Athyah Wahid , Dodi Safari\",\"doi\":\"10.1016/j.jmoldx.2024.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) application for targeted sequencing has made a breakthrough in the genomic research era. High diversity in the capsular polysaccharide (<em>cps</em>) locus of <em>Streptococcus pneumoniae</em> has hampered identification of the serotype. This study developed a new serotyping method for <em>S. pneumoniae</em> using CRISPR/Cas9–targeted sequencing with the Oxford Nanopore Technologies platform. A probe was designed at the position of the <em>cps</em> locus using an excision approach on two sides flanking genes between the <em>dexB</em> and <em>aliA</em> genes with approximately 20 kb. A native barcoding method was used for multiplexing. The probe will attach to a specific side followed by attachment of CRISPR/Cas9 to cut the recognition area. The study used <em>de novo</em> assembly to reconstruct sequence reads, which were analyzed using PneumoCRISPR, a new serotyping pipeline for Oxford Nanopore Technologies sequencing data output. Four CRISPR/Cas9 probes have been designed and recognize the <em>cps</em> locus of <em>S. pneumoniae</em>. Serotyping results align precisely with serotyping data from whole-genome sequencing. This serotyping method also allows researchers to use multiple samples in a single run. The new serotyping method based on CRISPR/Cas9–targeted sequencing holds immense promise for serotype identification of <em>S. pneumoniae</em>.</div></div>\",\"PeriodicalId\":50128,\"journal\":{\"name\":\"Journal of Molecular Diagnostics\",\"volume\":\"26 12\",\"pages\":\"Pages 1045-1054\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1525157824002150\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1525157824002150","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
A New Serotyping Method of Streptococcus pneumoniae Based on CRISPR/Cas9–Targeted Sequencing
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) application for targeted sequencing has made a breakthrough in the genomic research era. High diversity in the capsular polysaccharide (cps) locus of Streptococcus pneumoniae has hampered identification of the serotype. This study developed a new serotyping method for S. pneumoniae using CRISPR/Cas9–targeted sequencing with the Oxford Nanopore Technologies platform. A probe was designed at the position of the cps locus using an excision approach on two sides flanking genes between the dexB and aliA genes with approximately 20 kb. A native barcoding method was used for multiplexing. The probe will attach to a specific side followed by attachment of CRISPR/Cas9 to cut the recognition area. The study used de novo assembly to reconstruct sequence reads, which were analyzed using PneumoCRISPR, a new serotyping pipeline for Oxford Nanopore Technologies sequencing data output. Four CRISPR/Cas9 probes have been designed and recognize the cps locus of S. pneumoniae. Serotyping results align precisely with serotyping data from whole-genome sequencing. This serotyping method also allows researchers to use multiple samples in a single run. The new serotyping method based on CRISPR/Cas9–targeted sequencing holds immense promise for serotype identification of S. pneumoniae.
期刊介绍:
The Journal of Molecular Diagnostics, the official publication of the Association for Molecular Pathology (AMP), co-owned by the American Society for Investigative Pathology (ASIP), seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome for review articles that contain: novel discoveries or clinicopathologic correlations including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, clinical informatics, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods which may be applied to diagnosis or monitoring of disease or disease predisposition.