基于频域的潜在扩散模型用于水下图像增强

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2024-11-22 DOI:10.1016/j.patcog.2024.111198
Jingyu Song , Haiyong Xu , Gangyi Jiang , Mei Yu , Yeyao Chen , Ting Luo , Yang Song
{"title":"基于频域的潜在扩散模型用于水下图像增强","authors":"Jingyu Song ,&nbsp;Haiyong Xu ,&nbsp;Gangyi Jiang ,&nbsp;Mei Yu ,&nbsp;Yeyao Chen ,&nbsp;Ting Luo ,&nbsp;Yang Song","doi":"10.1016/j.patcog.2024.111198","DOIUrl":null,"url":null,"abstract":"<div><div>The degradation of underwater images, due to complex factors, negatively impacts the performance of underwater visual tasks. However, most underwater image enhancement methods (UIE) have been confined to the spatial domain, disregarding the frequency domain. This limitation hampers the full exploitation of the model’s learning and representational capabilities. To address this, a two-stage frequency domain-based latent diffusion model (FD-LDM) is introduced for UIE. Firstly, the model employs a lightweight parameter estimation network (L-PEN) to estimate the degradation parameters of underwater images, thereby mitigating the impact of color bias on the diffusion model. Subsequently, considering the varying degrees of recovery between high and low-frequency images, high and low-frequency priors are extracted in the second stage and integrated with the refined latent diffusion model to enhance the images further. Extensive experiments have confirmed the method’s effectiveness and robustness, particularly under color bias scenes.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"160 ","pages":"Article 111198"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency domain-based latent diffusion model for underwater image enhancement\",\"authors\":\"Jingyu Song ,&nbsp;Haiyong Xu ,&nbsp;Gangyi Jiang ,&nbsp;Mei Yu ,&nbsp;Yeyao Chen ,&nbsp;Ting Luo ,&nbsp;Yang Song\",\"doi\":\"10.1016/j.patcog.2024.111198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The degradation of underwater images, due to complex factors, negatively impacts the performance of underwater visual tasks. However, most underwater image enhancement methods (UIE) have been confined to the spatial domain, disregarding the frequency domain. This limitation hampers the full exploitation of the model’s learning and representational capabilities. To address this, a two-stage frequency domain-based latent diffusion model (FD-LDM) is introduced for UIE. Firstly, the model employs a lightweight parameter estimation network (L-PEN) to estimate the degradation parameters of underwater images, thereby mitigating the impact of color bias on the diffusion model. Subsequently, considering the varying degrees of recovery between high and low-frequency images, high and low-frequency priors are extracted in the second stage and integrated with the refined latent diffusion model to enhance the images further. Extensive experiments have confirmed the method’s effectiveness and robustness, particularly under color bias scenes.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"160 \",\"pages\":\"Article 111198\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003132032400949X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003132032400949X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于各种复杂因素,水下图像质量下降,对水下视觉任务的性能产生了负面影响。然而,大多数水下图像增强方法(UIE)都局限于空间域,而忽略了频率域。这种限制阻碍了模型学习和表征能力的充分发挥。为解决这一问题,我们针对 UIE 引入了基于频域的两阶段潜扩散模型(FD-LDM)。首先,该模型采用轻量级参数估计网络(L-PEN)来估计水下图像的退化参数,从而减轻颜色偏差对扩散模型的影响。随后,考虑到高频和低频图像的恢复程度不同,在第二阶段提取高频和低频前验,并与改进的潜扩散模型相结合,进一步增强图像。广泛的实验证实了该方法的有效性和鲁棒性,尤其是在色彩偏差场景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequency domain-based latent diffusion model for underwater image enhancement
The degradation of underwater images, due to complex factors, negatively impacts the performance of underwater visual tasks. However, most underwater image enhancement methods (UIE) have been confined to the spatial domain, disregarding the frequency domain. This limitation hampers the full exploitation of the model’s learning and representational capabilities. To address this, a two-stage frequency domain-based latent diffusion model (FD-LDM) is introduced for UIE. Firstly, the model employs a lightweight parameter estimation network (L-PEN) to estimate the degradation parameters of underwater images, thereby mitigating the impact of color bias on the diffusion model. Subsequently, considering the varying degrees of recovery between high and low-frequency images, high and low-frequency priors are extracted in the second stage and integrated with the refined latent diffusion model to enhance the images further. Extensive experiments have confirmed the method’s effectiveness and robustness, particularly under color bias scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
Semantic decomposition and enhancement hashing for deep cross-modal retrieval Unsupervised evaluation for out-of-distribution detection UM-CAM: Uncertainty-weighted multi-resolution class activation maps for weakly-supervised segmentation Scalable and Adaptive Graph Neural Networks with Self-Label-Enhanced Training Diffusion-based framework for weakly-supervised temporal action localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1