Gang Xiao, Guilong Tanzhu, Xuan Gao, Lifeng Li, Zhiyuan Liu, Xuefeng Xia, Rongrong Zhou
{"title":"通过RNA测序预测肺腺癌脑转移预后和免疫特征的免疫评分系统","authors":"Gang Xiao, Guilong Tanzhu, Xuan Gao, Lifeng Li, Zhiyuan Liu, Xuefeng Xia, Rongrong Zhou","doi":"10.1186/s40478-024-01895-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Previous studies have reported that the tumor immune microenvironment (TIME) was associated with the prognosis of lung cancer patients and the efficacy of immunotherapy. However, given the significant challenges in obtaining specimens of brain metastases (BrMs), few studies explored the correlation between the TIME and the prognosis in patients with BrMs from lung adenocarcinoma (LUAD).</p><p><strong>Methods: </strong>Transcript profiling of archival formalin-fixed and paraffin-embedded specimens of BrMs from 70 LUAD patients with surgically resected BrMs was carried out using RNA sequencing. An immune scoring system, the green-yellow module score (GYMS), was developed to predict prognosis and immune characteristics in both BrMs and primary LUAD using Weighted Correlation Network analysis (WGCNA) and GSVA analysis. We comprehensively evaluated the immunological role of GYMS based on gene expression profile of LUAD BrMs by systematically correlating GYMS with immunological characteristics and immunotherapy responsiveness in the BrMs. Immunohistochemistry was applied for validation.</p><p><strong>Results: </strong>We found that the high-GYMS group had better clinical prognosis and inflamed immune landscape including high infiltrations of various immune cells, increased immunomodulatory expression, and enriched immune-related pathways by using RNA-seq and immunohistochemical analysis. Low-GYMS group presented a lacked immune infiltration characteristic. Besides, the high-GYMS group had lower TIDE score and higher T-cell inflamed score than low-GYMS group. The GYMS has been validated in independent BrMs cohorts and primary NSCLC cohort treated with anti-PD-1/PD-L1, showing strong reproducibility and stability in both primary LUAD and BrMs. In addition, we construct a GYMS-related risk signature for patients with LUAD BrMs to predict prognosis.</p><p><strong>Conclusions: </strong>We identified two immune-related subtypes which used to estimate prognosis and immune characteristics and developed a reliable GYMS-related risk signature in LUAD BrMs. These results will enhance the understanding of the immune microenvironment in LUAD BrMs and lay the theoretical foundation for the development of personalized therapies for LUAD patients with BrMs.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"181"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An immune scoring system predicts prognosis and immune characteristics in lung adenocarcinoma brain metastases by RNA sequencing.\",\"authors\":\"Gang Xiao, Guilong Tanzhu, Xuan Gao, Lifeng Li, Zhiyuan Liu, Xuefeng Xia, Rongrong Zhou\",\"doi\":\"10.1186/s40478-024-01895-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Previous studies have reported that the tumor immune microenvironment (TIME) was associated with the prognosis of lung cancer patients and the efficacy of immunotherapy. However, given the significant challenges in obtaining specimens of brain metastases (BrMs), few studies explored the correlation between the TIME and the prognosis in patients with BrMs from lung adenocarcinoma (LUAD).</p><p><strong>Methods: </strong>Transcript profiling of archival formalin-fixed and paraffin-embedded specimens of BrMs from 70 LUAD patients with surgically resected BrMs was carried out using RNA sequencing. An immune scoring system, the green-yellow module score (GYMS), was developed to predict prognosis and immune characteristics in both BrMs and primary LUAD using Weighted Correlation Network analysis (WGCNA) and GSVA analysis. We comprehensively evaluated the immunological role of GYMS based on gene expression profile of LUAD BrMs by systematically correlating GYMS with immunological characteristics and immunotherapy responsiveness in the BrMs. Immunohistochemistry was applied for validation.</p><p><strong>Results: </strong>We found that the high-GYMS group had better clinical prognosis and inflamed immune landscape including high infiltrations of various immune cells, increased immunomodulatory expression, and enriched immune-related pathways by using RNA-seq and immunohistochemical analysis. Low-GYMS group presented a lacked immune infiltration characteristic. Besides, the high-GYMS group had lower TIDE score and higher T-cell inflamed score than low-GYMS group. The GYMS has been validated in independent BrMs cohorts and primary NSCLC cohort treated with anti-PD-1/PD-L1, showing strong reproducibility and stability in both primary LUAD and BrMs. In addition, we construct a GYMS-related risk signature for patients with LUAD BrMs to predict prognosis.</p><p><strong>Conclusions: </strong>We identified two immune-related subtypes which used to estimate prognosis and immune characteristics and developed a reliable GYMS-related risk signature in LUAD BrMs. These results will enhance the understanding of the immune microenvironment in LUAD BrMs and lay the theoretical foundation for the development of personalized therapies for LUAD patients with BrMs.</p>\",\"PeriodicalId\":6914,\"journal\":{\"name\":\"Acta Neuropathologica Communications\",\"volume\":\"12 1\",\"pages\":\"181\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neuropathologica Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40478-024-01895-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-024-01895-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
An immune scoring system predicts prognosis and immune characteristics in lung adenocarcinoma brain metastases by RNA sequencing.
Background: Previous studies have reported that the tumor immune microenvironment (TIME) was associated with the prognosis of lung cancer patients and the efficacy of immunotherapy. However, given the significant challenges in obtaining specimens of brain metastases (BrMs), few studies explored the correlation between the TIME and the prognosis in patients with BrMs from lung adenocarcinoma (LUAD).
Methods: Transcript profiling of archival formalin-fixed and paraffin-embedded specimens of BrMs from 70 LUAD patients with surgically resected BrMs was carried out using RNA sequencing. An immune scoring system, the green-yellow module score (GYMS), was developed to predict prognosis and immune characteristics in both BrMs and primary LUAD using Weighted Correlation Network analysis (WGCNA) and GSVA analysis. We comprehensively evaluated the immunological role of GYMS based on gene expression profile of LUAD BrMs by systematically correlating GYMS with immunological characteristics and immunotherapy responsiveness in the BrMs. Immunohistochemistry was applied for validation.
Results: We found that the high-GYMS group had better clinical prognosis and inflamed immune landscape including high infiltrations of various immune cells, increased immunomodulatory expression, and enriched immune-related pathways by using RNA-seq and immunohistochemical analysis. Low-GYMS group presented a lacked immune infiltration characteristic. Besides, the high-GYMS group had lower TIDE score and higher T-cell inflamed score than low-GYMS group. The GYMS has been validated in independent BrMs cohorts and primary NSCLC cohort treated with anti-PD-1/PD-L1, showing strong reproducibility and stability in both primary LUAD and BrMs. In addition, we construct a GYMS-related risk signature for patients with LUAD BrMs to predict prognosis.
Conclusions: We identified two immune-related subtypes which used to estimate prognosis and immune characteristics and developed a reliable GYMS-related risk signature in LUAD BrMs. These results will enhance the understanding of the immune microenvironment in LUAD BrMs and lay the theoretical foundation for the development of personalized therapies for LUAD patients with BrMs.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.