在高碱性条件下利用卤代嗜碱性细菌对甲基橙染料和纺织废水进行生物处理。

IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Extremophiles Pub Date : 2024-11-27 DOI:10.1007/s00792-024-01369-9
Gunisha Wadhawan, Anshu Gupta
{"title":"在高碱性条件下利用卤代嗜碱性细菌对甲基橙染料和纺织废水进行生物处理。","authors":"Gunisha Wadhawan, Anshu Gupta","doi":"10.1007/s00792-024-01369-9","DOIUrl":null,"url":null,"abstract":"<p><p>As the textile wastewater is highly saline and has high pH it is important to employ extremophilic microbes to survive in harsh conditions and provide effective bioremediation of textile dyes. This study aims to find a sustainable solution for dye removal by investigating the potential of an indigenously isolated bacterium, Nesterenkonia lacusekhoensis EMLA3 (halo-alkaliphilic) for treatment of an azo dye, methyl orange (MO) and textile effluent. MO dye decolorization studies were conducted using mineral salt media (MSM) by varying incubation time (0-120 h), initial dye concentration (50-350 mg/L), pH (7.0-12.0), inoculum dose (3-10%), agitation (stationary, 100 rpm and 200 rpm), and temperature (20-55 °C). Dye removal by the bacterium for 50 mg/L of dye was > 97.0% within 72 h of incubation at pH 11.0 in stationary condition. Bacterium had excellent reusability i.e. > 97% dye removal for up to 5 cycles. Moreover, bacterium has the potential for co-removal of chromium (VI) (3.5-28 mg/L), and also almost complete dye removal in presence of high amount of NaCl. Liquid chromatography-mass spectrometry showed degradation as the mechanism of dye removal. Application of the bacterium to MO dye spiked real textile wastewater showed excellent dye removal. Phyto-toxicity assessment conducted on Vigna radiata and Triticum aestivum seeds, showed 100% germination of biotreated textile wastewater indicating its reuse potential.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"29 1","pages":"6"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological treatment of methyl orange dye and textile wastewater using halo-alkaliphilic bacteria under highly alkaline conditions.\",\"authors\":\"Gunisha Wadhawan, Anshu Gupta\",\"doi\":\"10.1007/s00792-024-01369-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the textile wastewater is highly saline and has high pH it is important to employ extremophilic microbes to survive in harsh conditions and provide effective bioremediation of textile dyes. This study aims to find a sustainable solution for dye removal by investigating the potential of an indigenously isolated bacterium, Nesterenkonia lacusekhoensis EMLA3 (halo-alkaliphilic) for treatment of an azo dye, methyl orange (MO) and textile effluent. MO dye decolorization studies were conducted using mineral salt media (MSM) by varying incubation time (0-120 h), initial dye concentration (50-350 mg/L), pH (7.0-12.0), inoculum dose (3-10%), agitation (stationary, 100 rpm and 200 rpm), and temperature (20-55 °C). Dye removal by the bacterium for 50 mg/L of dye was > 97.0% within 72 h of incubation at pH 11.0 in stationary condition. Bacterium had excellent reusability i.e. > 97% dye removal for up to 5 cycles. Moreover, bacterium has the potential for co-removal of chromium (VI) (3.5-28 mg/L), and also almost complete dye removal in presence of high amount of NaCl. Liquid chromatography-mass spectrometry showed degradation as the mechanism of dye removal. Application of the bacterium to MO dye spiked real textile wastewater showed excellent dye removal. Phyto-toxicity assessment conducted on Vigna radiata and Triticum aestivum seeds, showed 100% germination of biotreated textile wastewater indicating its reuse potential.</p>\",\"PeriodicalId\":12302,\"journal\":{\"name\":\"Extremophiles\",\"volume\":\"29 1\",\"pages\":\"6\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extremophiles\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00792-024-01369-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremophiles","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-024-01369-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于纺织废水含盐量高、pH 值高,因此采用嗜极微生物在恶劣条件下生存并对纺织染料进行有效的生物修复非常重要。本研究旨在通过研究一种本地分离的细菌 Nesterenkonia lacusekhoensis EMLA3(卤代嗜碱菌)处理偶氮染料甲基橙(MO)和纺织废水的潜力,找到一种可持续的染料去除解决方案。通过改变培养时间(0-120 h)、初始染料浓度(50-350 mg/L)、pH 值(7.0-12.0)、接种物剂量(3-10%)、搅拌(静止、100 rpm 和 200 rpm)和温度(20-55 °C),使用矿物盐培养基(MSM)进行了 MO 染料脱色研究。在 pH 值为 11.0 的固定条件下,培养 72 小时后,该细菌对 50 mg/L 染料的去除率大于 97.0%。该细菌具有极佳的重复使用性,即 5 个循环的染料去除率大于 97%。此外,该细菌还具有共同去除铬(VI)(3.5-28 mg/L)的潜力,而且在大量氯化钠存在的情况下,几乎可以完全去除染料。液相色谱-质谱分析表明,降解是染料去除的机制。将该细菌应用于添加了 MO 染料的实际纺织废水,显示出极佳的染料去除效果。对 Vigna radiata 和 Triticum aestivum 种子进行的植物毒性评估显示,生物处理过的纺织废水的发芽率为 100%,这表明生物处理过的纺织废水具有再利用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biological treatment of methyl orange dye and textile wastewater using halo-alkaliphilic bacteria under highly alkaline conditions.

As the textile wastewater is highly saline and has high pH it is important to employ extremophilic microbes to survive in harsh conditions and provide effective bioremediation of textile dyes. This study aims to find a sustainable solution for dye removal by investigating the potential of an indigenously isolated bacterium, Nesterenkonia lacusekhoensis EMLA3 (halo-alkaliphilic) for treatment of an azo dye, methyl orange (MO) and textile effluent. MO dye decolorization studies were conducted using mineral salt media (MSM) by varying incubation time (0-120 h), initial dye concentration (50-350 mg/L), pH (7.0-12.0), inoculum dose (3-10%), agitation (stationary, 100 rpm and 200 rpm), and temperature (20-55 °C). Dye removal by the bacterium for 50 mg/L of dye was > 97.0% within 72 h of incubation at pH 11.0 in stationary condition. Bacterium had excellent reusability i.e. > 97% dye removal for up to 5 cycles. Moreover, bacterium has the potential for co-removal of chromium (VI) (3.5-28 mg/L), and also almost complete dye removal in presence of high amount of NaCl. Liquid chromatography-mass spectrometry showed degradation as the mechanism of dye removal. Application of the bacterium to MO dye spiked real textile wastewater showed excellent dye removal. Phyto-toxicity assessment conducted on Vigna radiata and Triticum aestivum seeds, showed 100% germination of biotreated textile wastewater indicating its reuse potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extremophiles
Extremophiles 生物-生化与分子生物学
CiteScore
6.80
自引率
6.90%
发文量
28
审稿时长
2 months
期刊介绍: Extremophiles features original research articles, reviews, and method papers on the biology, molecular biology, structure, function, and applications of microbial life at high or low temperature, pressure, acidity, alkalinity, salinity, or desiccation; or in the presence of organic solvents, heavy metals, normally toxic substances, or radiation.
期刊最新文献
Biological treatment of methyl orange dye and textile wastewater using halo-alkaliphilic bacteria under highly alkaline conditions. Lawrence I. (Larry) Hochstein a researcher dedicated to halophilic microorganisms of all types and environments. Characterization of prokaryotic communities from Italian super-heated fumaroles. Increase of ATP synthesis and amino acids absorption contributes to cold adaptation in Antarctic bacterium Poseidonibacter antarcticus SM1702T. Microbial and mineralogical characterization of the alkaline Chae Son hot spring, Northern Thailand.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1