{"title":"亚致死性杀虫剂暴露对 Vespa magnifica 的影响:生理学和转录组分析的启示","authors":"Qingmei Hu, Sijia Fan, Kaiqing Liu, Feng Shi, Xueting Cao, Yiquan Lin, Renyuan Meng, Zichao Liu","doi":"10.3390/insects15110839","DOIUrl":null,"url":null,"abstract":"<p><p>Insecticides are widely used to boost crop yields, but their effects on non-target insects like <i>Vespa magnifica</i> are still poorly understood. Despite its ecological and economic significance, <i>Vespa magnifica</i> has been largely neglected in risk assessments. This study employed physiological, biochemical, and transcriptomic analyses to investigate the impact of sublethal concentrations of thiamethoxam, avermectin, chlorfenapyr, and β-cypermethrin on <i>Vespa magnifica.</i> Although larval survival rates remained unchanged, both pupation and fledge rates were significantly reduced. Enzymatic assays indicated an upregulation of superoxide dismutase and catalase activity alongside a suppression of peroxidase under insecticide stress. Transcriptomic analysis revealed increased adenosine triphosphate-related processes and mitochondrial electron transport activity, suggesting elevated energy expenditure to counter insecticide exposure, potentially impairing essential functions like flight, hunting, and immune response. The enrichment of pathways such as glycolysis, hypoxia-inducible factor signaling, and cholinergic synaptic metabolism under insecticide stress highlights the complexity of the molecular response with notable effects on learning, memory, and detoxification processes. These findings underscore the broader ecological risks of insecticide exposure to non-target insects and highlight the need for further research into the long-term effects of newer insecticides along with the development of strategies to safeguard beneficial insect populations.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"15 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Sublethal Insecticides Exposure on <i>Vespa magnifica</i>: Insights from Physiological and Transcriptomic Analyses.\",\"authors\":\"Qingmei Hu, Sijia Fan, Kaiqing Liu, Feng Shi, Xueting Cao, Yiquan Lin, Renyuan Meng, Zichao Liu\",\"doi\":\"10.3390/insects15110839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insecticides are widely used to boost crop yields, but their effects on non-target insects like <i>Vespa magnifica</i> are still poorly understood. Despite its ecological and economic significance, <i>Vespa magnifica</i> has been largely neglected in risk assessments. This study employed physiological, biochemical, and transcriptomic analyses to investigate the impact of sublethal concentrations of thiamethoxam, avermectin, chlorfenapyr, and β-cypermethrin on <i>Vespa magnifica.</i> Although larval survival rates remained unchanged, both pupation and fledge rates were significantly reduced. Enzymatic assays indicated an upregulation of superoxide dismutase and catalase activity alongside a suppression of peroxidase under insecticide stress. Transcriptomic analysis revealed increased adenosine triphosphate-related processes and mitochondrial electron transport activity, suggesting elevated energy expenditure to counter insecticide exposure, potentially impairing essential functions like flight, hunting, and immune response. The enrichment of pathways such as glycolysis, hypoxia-inducible factor signaling, and cholinergic synaptic metabolism under insecticide stress highlights the complexity of the molecular response with notable effects on learning, memory, and detoxification processes. These findings underscore the broader ecological risks of insecticide exposure to non-target insects and highlight the need for further research into the long-term effects of newer insecticides along with the development of strategies to safeguard beneficial insect populations.</p>\",\"PeriodicalId\":13642,\"journal\":{\"name\":\"Insects\",\"volume\":\"15 11\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insects\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/insects15110839\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects15110839","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Impact of Sublethal Insecticides Exposure on Vespa magnifica: Insights from Physiological and Transcriptomic Analyses.
Insecticides are widely used to boost crop yields, but their effects on non-target insects like Vespa magnifica are still poorly understood. Despite its ecological and economic significance, Vespa magnifica has been largely neglected in risk assessments. This study employed physiological, biochemical, and transcriptomic analyses to investigate the impact of sublethal concentrations of thiamethoxam, avermectin, chlorfenapyr, and β-cypermethrin on Vespa magnifica. Although larval survival rates remained unchanged, both pupation and fledge rates were significantly reduced. Enzymatic assays indicated an upregulation of superoxide dismutase and catalase activity alongside a suppression of peroxidase under insecticide stress. Transcriptomic analysis revealed increased adenosine triphosphate-related processes and mitochondrial electron transport activity, suggesting elevated energy expenditure to counter insecticide exposure, potentially impairing essential functions like flight, hunting, and immune response. The enrichment of pathways such as glycolysis, hypoxia-inducible factor signaling, and cholinergic synaptic metabolism under insecticide stress highlights the complexity of the molecular response with notable effects on learning, memory, and detoxification processes. These findings underscore the broader ecological risks of insecticide exposure to non-target insects and highlight the need for further research into the long-term effects of newer insecticides along with the development of strategies to safeguard beneficial insect populations.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.