Weirui Guo, Matthew Rioux, Frances Shaffo, Yuhui Hu, Ze Yu, Chao Xing, Steven J Gray
{"title":"AAV9/SLC6A1 基因疗法可挽救 Slc6a1-/- 小鼠的异常脑电图模式和认知行为缺陷。","authors":"Weirui Guo, Matthew Rioux, Frances Shaffo, Yuhui Hu, Ze Yu, Chao Xing, Steven J Gray","doi":"10.1172/JCI182235","DOIUrl":null,"url":null,"abstract":"<p><p>The SLC6A1 gene encodes the gamma-aminobutyric acid (GABA) transporter GAT-1, the deficiency of which is associated with infantile encephalopathy with intellectual disability. We designed two AAV9 vectors, with either the JeT or MeP promoter, and conducted preclinical gene therapy studies using heterozygous and homozygous Slc6a1 KO mice at different developmental ages and various routes of administration. Neonatal intracerebroventricular administration of either vector resulted in significantly normalized EEG patterns in Slc6a1-/- or Slc6a1+/- mice, as well as improvement in several behavioral phenotypes of Slc6a1-/- mice. However, some mortality and adverse effects were observed in neonatal-treated mice. Intrathecal administration of either vector at postnatal day (PND) 5 normalized EEG patterns in Slc6a1+/- mice, but in Slc6a1-/- mice the treatment only rescued nest building without impact on EEG. Both vectors were well-tolerated in all mice treated at PND5 or later (including WT mice), up to 1 year post-injection. Overall, our data demonstrate compelling efficacy when mice are treated at an early development age. We also identified that outside of the neonatal treatment window, the severe homozygous KO model is more refractory to treatment, whereas our treatments in the heterozygous mice, which genotypically match human patients, have resulted in stronger benefits.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AAV9/SLC6A1 gene therapy rescues abnormal EEG patterns and cognitive behavioral deficiencies in Slc6a1-/- mice.\",\"authors\":\"Weirui Guo, Matthew Rioux, Frances Shaffo, Yuhui Hu, Ze Yu, Chao Xing, Steven J Gray\",\"doi\":\"10.1172/JCI182235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The SLC6A1 gene encodes the gamma-aminobutyric acid (GABA) transporter GAT-1, the deficiency of which is associated with infantile encephalopathy with intellectual disability. We designed two AAV9 vectors, with either the JeT or MeP promoter, and conducted preclinical gene therapy studies using heterozygous and homozygous Slc6a1 KO mice at different developmental ages and various routes of administration. Neonatal intracerebroventricular administration of either vector resulted in significantly normalized EEG patterns in Slc6a1-/- or Slc6a1+/- mice, as well as improvement in several behavioral phenotypes of Slc6a1-/- mice. However, some mortality and adverse effects were observed in neonatal-treated mice. Intrathecal administration of either vector at postnatal day (PND) 5 normalized EEG patterns in Slc6a1+/- mice, but in Slc6a1-/- mice the treatment only rescued nest building without impact on EEG. Both vectors were well-tolerated in all mice treated at PND5 or later (including WT mice), up to 1 year post-injection. Overall, our data demonstrate compelling efficacy when mice are treated at an early development age. We also identified that outside of the neonatal treatment window, the severe homozygous KO model is more refractory to treatment, whereas our treatments in the heterozygous mice, which genotypically match human patients, have resulted in stronger benefits.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI182235\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI182235","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
AAV9/SLC6A1 gene therapy rescues abnormal EEG patterns and cognitive behavioral deficiencies in Slc6a1-/- mice.
The SLC6A1 gene encodes the gamma-aminobutyric acid (GABA) transporter GAT-1, the deficiency of which is associated with infantile encephalopathy with intellectual disability. We designed two AAV9 vectors, with either the JeT or MeP promoter, and conducted preclinical gene therapy studies using heterozygous and homozygous Slc6a1 KO mice at different developmental ages and various routes of administration. Neonatal intracerebroventricular administration of either vector resulted in significantly normalized EEG patterns in Slc6a1-/- or Slc6a1+/- mice, as well as improvement in several behavioral phenotypes of Slc6a1-/- mice. However, some mortality and adverse effects were observed in neonatal-treated mice. Intrathecal administration of either vector at postnatal day (PND) 5 normalized EEG patterns in Slc6a1+/- mice, but in Slc6a1-/- mice the treatment only rescued nest building without impact on EEG. Both vectors were well-tolerated in all mice treated at PND5 or later (including WT mice), up to 1 year post-injection. Overall, our data demonstrate compelling efficacy when mice are treated at an early development age. We also identified that outside of the neonatal treatment window, the severe homozygous KO model is more refractory to treatment, whereas our treatments in the heterozygous mice, which genotypically match human patients, have resulted in stronger benefits.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.