Lu Tang, Nora Fung-Yee Tam, Winnie Lam, Thomas Chun-Hung Lee, Steven Jing-Liang Xu, Fred Wang-Fat Lee
{"title":"深入了解作为酪氨酰-DNA 磷酸二酯酶的氮相关蛋白 50 (NAP50)在甲藻中的作用。","authors":"Lu Tang, Nora Fung-Yee Tam, Winnie Lam, Thomas Chun-Hung Lee, Steven Jing-Liang Xu, Fred Wang-Fat Lee","doi":"10.3390/microorganisms12112286","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen-associated protein 50 (NAP50) is an abundant plastid protein with an unknown function identified in <i>Alexandrium affine</i> (Dinophyceae). No progress has been made in discovering the function of NAP50 since its first characterization in 2009. The present study is a continuation of work on the predicted function of NAP50. The results show that the NAP50 gene lacks introns but contains abundant base substitutions, consistent with the characteristics of dinoflagellate nuclear genes. The NAP50 protein is found to be widely expressed in dinoflagellate lineages through bioinformatics analysis and Western blotting, suggesting that NAP50 is not exclusive to <i>Alexandrium</i>, which differs from previous understandings. Phylogenetic analysis reveals that NAP50 belongs to the tyrosyl-DNA phosphodiesterase (TDP) family; however, it is structurally distinct from the TDP2 that is present in some dinoflagellate species. The three-dimensional structure and biological functions of NAP50 are predicted using deep learning algorithms. Based on evolutionary relationships and functional predictions, NAP50 may play a role in repairing plastid DNA damage and potentially contribute to the transcription of plastid genes in dinoflagellates.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"12 11","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into Nitrogen-Associated Protein 50 (NAP50) as a Tyrosyl-DNA Phosphodiesterase in Dinoflagellates.\",\"authors\":\"Lu Tang, Nora Fung-Yee Tam, Winnie Lam, Thomas Chun-Hung Lee, Steven Jing-Liang Xu, Fred Wang-Fat Lee\",\"doi\":\"10.3390/microorganisms12112286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitrogen-associated protein 50 (NAP50) is an abundant plastid protein with an unknown function identified in <i>Alexandrium affine</i> (Dinophyceae). No progress has been made in discovering the function of NAP50 since its first characterization in 2009. The present study is a continuation of work on the predicted function of NAP50. The results show that the NAP50 gene lacks introns but contains abundant base substitutions, consistent with the characteristics of dinoflagellate nuclear genes. The NAP50 protein is found to be widely expressed in dinoflagellate lineages through bioinformatics analysis and Western blotting, suggesting that NAP50 is not exclusive to <i>Alexandrium</i>, which differs from previous understandings. Phylogenetic analysis reveals that NAP50 belongs to the tyrosyl-DNA phosphodiesterase (TDP) family; however, it is structurally distinct from the TDP2 that is present in some dinoflagellate species. The three-dimensional structure and biological functions of NAP50 are predicted using deep learning algorithms. Based on evolutionary relationships and functional predictions, NAP50 may play a role in repairing plastid DNA damage and potentially contribute to the transcription of plastid genes in dinoflagellates.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms12112286\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms12112286","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Insights into Nitrogen-Associated Protein 50 (NAP50) as a Tyrosyl-DNA Phosphodiesterase in Dinoflagellates.
Nitrogen-associated protein 50 (NAP50) is an abundant plastid protein with an unknown function identified in Alexandrium affine (Dinophyceae). No progress has been made in discovering the function of NAP50 since its first characterization in 2009. The present study is a continuation of work on the predicted function of NAP50. The results show that the NAP50 gene lacks introns but contains abundant base substitutions, consistent with the characteristics of dinoflagellate nuclear genes. The NAP50 protein is found to be widely expressed in dinoflagellate lineages through bioinformatics analysis and Western blotting, suggesting that NAP50 is not exclusive to Alexandrium, which differs from previous understandings. Phylogenetic analysis reveals that NAP50 belongs to the tyrosyl-DNA phosphodiesterase (TDP) family; however, it is structurally distinct from the TDP2 that is present in some dinoflagellate species. The three-dimensional structure and biological functions of NAP50 are predicted using deep learning algorithms. Based on evolutionary relationships and functional predictions, NAP50 may play a role in repairing plastid DNA damage and potentially contribute to the transcription of plastid genes in dinoflagellates.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.