Rok Grah, Calin C Guet, Gasper Tkačik, Mato Lagator
{"title":"将分子机制与其进化后果联系起来:入门指南。","authors":"Rok Grah, Calin C Guet, Gasper Tkačik, Mato Lagator","doi":"10.1093/genetics/iyae191","DOIUrl":null,"url":null,"abstract":"<p><p>A major obstacle to predictive understanding of evolution stems from the complexity of biological systems, which prevents detailed characterization of key evolutionary properties. Here, we highlight some of the major sources of complexity that arise when relating molecular mechanisms to their evolutionary consequences and ask whether accounting for every mechanistic detail is important to accurately predict evolutionary outcomes. To do this, we developed a mechanistic model of a bacterial promoter regulated by two proteins, allowing us to connect any promoter genotype to six phenotypes that capture the dynamics of gene expression following an environmental switch. Accounting for the mechanisms that govern how this system works enabled us to provide an in-depth picture of how regulated bacterial promoters might evolve. More importantly, we used the model to explore which factors that contribute to the complexity of this system are essential for understanding its evolution, and which can be simplified without information loss. We found that several key evolutionary properties - the distribution of phenotypic and fitness effects of mutations, the evolutionary trajectories during selection for regulation - can be accurately captured without accounting for all, or even most, parameters of the system. Our findings point to the need for a mechanistic approach to studying evolution, as it enables tackling biological complexity and in doing so improves the ability to predict evolutionary outcomes.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linking Molecular Mechanisms to their Evolutionary Consequences: a primer.\",\"authors\":\"Rok Grah, Calin C Guet, Gasper Tkačik, Mato Lagator\",\"doi\":\"10.1093/genetics/iyae191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A major obstacle to predictive understanding of evolution stems from the complexity of biological systems, which prevents detailed characterization of key evolutionary properties. Here, we highlight some of the major sources of complexity that arise when relating molecular mechanisms to their evolutionary consequences and ask whether accounting for every mechanistic detail is important to accurately predict evolutionary outcomes. To do this, we developed a mechanistic model of a bacterial promoter regulated by two proteins, allowing us to connect any promoter genotype to six phenotypes that capture the dynamics of gene expression following an environmental switch. Accounting for the mechanisms that govern how this system works enabled us to provide an in-depth picture of how regulated bacterial promoters might evolve. More importantly, we used the model to explore which factors that contribute to the complexity of this system are essential for understanding its evolution, and which can be simplified without information loss. We found that several key evolutionary properties - the distribution of phenotypic and fitness effects of mutations, the evolutionary trajectories during selection for regulation - can be accurately captured without accounting for all, or even most, parameters of the system. Our findings point to the need for a mechanistic approach to studying evolution, as it enables tackling biological complexity and in doing so improves the ability to predict evolutionary outcomes.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyae191\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae191","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Linking Molecular Mechanisms to their Evolutionary Consequences: a primer.
A major obstacle to predictive understanding of evolution stems from the complexity of biological systems, which prevents detailed characterization of key evolutionary properties. Here, we highlight some of the major sources of complexity that arise when relating molecular mechanisms to their evolutionary consequences and ask whether accounting for every mechanistic detail is important to accurately predict evolutionary outcomes. To do this, we developed a mechanistic model of a bacterial promoter regulated by two proteins, allowing us to connect any promoter genotype to six phenotypes that capture the dynamics of gene expression following an environmental switch. Accounting for the mechanisms that govern how this system works enabled us to provide an in-depth picture of how regulated bacterial promoters might evolve. More importantly, we used the model to explore which factors that contribute to the complexity of this system are essential for understanding its evolution, and which can be simplified without information loss. We found that several key evolutionary properties - the distribution of phenotypic and fitness effects of mutations, the evolutionary trajectories during selection for regulation - can be accurately captured without accounting for all, or even most, parameters of the system. Our findings point to the need for a mechanistic approach to studying evolution, as it enables tackling biological complexity and in doing so improves the ability to predict evolutionary outcomes.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.