用于预测HER2为零、低和阳性乳腺癌的体外相干运动成像和动态对比增强磁共振成像定量参数。

IF 3.8 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Academic Radiology Pub Date : 2024-11-25 DOI:10.1016/j.acra.2024.11.011
Siqi Zhao, Shiyu Wang, Yuanfei Li, Yueqi Wu, Moyun Zhang, Ning Ning, Hongbing Liang, Deshuo Dong, Jie Yang, Xue Gao, Haonan Guan, Lina Zhang
{"title":"用于预测HER2为零、低和阳性乳腺癌的体外相干运动成像和动态对比增强磁共振成像定量参数。","authors":"Siqi Zhao, Shiyu Wang, Yuanfei Li, Yueqi Wu, Moyun Zhang, Ning Ning, Hongbing Liang, Deshuo Dong, Jie Yang, Xue Gao, Haonan Guan, Lina Zhang","doi":"10.1016/j.acra.2024.11.011","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>To explore the predictive value of quantitative parameters from intravoxel incoherent movement (IVIM) imging and dynamic contrast enhancement MRI (DCE-MRI) for HER2 expression in breast cancer.</p><p><strong>Materials and methods: </strong>This retrospective study included 167 women with breast cancer who underwent MRI from December 2019 to December 2023, categorized into 48 HER2-positive, 78 HER2-low and 41 HER2-zero cancers. All patients underwent IVIM imaging and DCE-MRI. Statistical analyses, including one-way ANOVA, Kruskal-Wallis test and χ2 test, were employed to compare clinical data, MRI features, and MRI quantitative parameters including standard ADC(ADC), pure diffusion coefficient(D), perfusion-related diffusion coefficient(D*), perfusion fraction(f), volume transfer constant(K<sup>trans</sup>), extravascular extracellular interstitial volume ratio(V<sub>e</sub>) and rate constant(K<sub>ep</sub>) between the three groups. Multivariable logistic regression was used to identify independent predictors for distinguishing HER2 expressions. The diagnostic efficacy of significant IVIM and DCE parameters for different HER2 expressions was analyzed using receiver operator characteristic (ROC) curves.</p><p><strong>Results: </strong>Peritumoral edema, histological grade and K<sub>ep</sub> achieved an AUC of 0.86(95%CI:0.78,0.91) in distinguishing HER2-positive tumors from HER2-low expressing tumors and were independent predictors for differentiating these two groups. Among HER2-positive and -zero breast cancers, the combined model of D*, K<sup>trans</sup> and K<sub>ep</sub> had an AUC of 0.74(95%CI:0.63,0.82) for the prediction of HER2-positive versus HER2-zero cancers, and its prediction efficiency was not improved compared with that of a single parameter(P > .05).</p><p><strong>Conclusion: </strong>Quantitative parameters from intravoxel incoherent movement imaging and dynamic contrast enhancement MRI can predict different HER2 expressions in breast cancer from different perspectives, with implications for therapy.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Parameters of Intravoxel Incoherent Movement Imaging and Dynamic Contrast Enhancement MRI for the Prediction of HER2-Zero, -Low, and -Positive Breast Cancers.\",\"authors\":\"Siqi Zhao, Shiyu Wang, Yuanfei Li, Yueqi Wu, Moyun Zhang, Ning Ning, Hongbing Liang, Deshuo Dong, Jie Yang, Xue Gao, Haonan Guan, Lina Zhang\",\"doi\":\"10.1016/j.acra.2024.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Rationale and objectives: </strong>To explore the predictive value of quantitative parameters from intravoxel incoherent movement (IVIM) imging and dynamic contrast enhancement MRI (DCE-MRI) for HER2 expression in breast cancer.</p><p><strong>Materials and methods: </strong>This retrospective study included 167 women with breast cancer who underwent MRI from December 2019 to December 2023, categorized into 48 HER2-positive, 78 HER2-low and 41 HER2-zero cancers. All patients underwent IVIM imaging and DCE-MRI. Statistical analyses, including one-way ANOVA, Kruskal-Wallis test and χ2 test, were employed to compare clinical data, MRI features, and MRI quantitative parameters including standard ADC(ADC), pure diffusion coefficient(D), perfusion-related diffusion coefficient(D*), perfusion fraction(f), volume transfer constant(K<sup>trans</sup>), extravascular extracellular interstitial volume ratio(V<sub>e</sub>) and rate constant(K<sub>ep</sub>) between the three groups. Multivariable logistic regression was used to identify independent predictors for distinguishing HER2 expressions. The diagnostic efficacy of significant IVIM and DCE parameters for different HER2 expressions was analyzed using receiver operator characteristic (ROC) curves.</p><p><strong>Results: </strong>Peritumoral edema, histological grade and K<sub>ep</sub> achieved an AUC of 0.86(95%CI:0.78,0.91) in distinguishing HER2-positive tumors from HER2-low expressing tumors and were independent predictors for differentiating these two groups. Among HER2-positive and -zero breast cancers, the combined model of D*, K<sup>trans</sup> and K<sub>ep</sub> had an AUC of 0.74(95%CI:0.63,0.82) for the prediction of HER2-positive versus HER2-zero cancers, and its prediction efficiency was not improved compared with that of a single parameter(P > .05).</p><p><strong>Conclusion: </strong>Quantitative parameters from intravoxel incoherent movement imaging and dynamic contrast enhancement MRI can predict different HER2 expressions in breast cancer from different perspectives, with implications for therapy.</p>\",\"PeriodicalId\":50928,\"journal\":{\"name\":\"Academic Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.acra.2024.11.011\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.11.011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

原理和目的:探讨体细胞内不连贯运动(IVIM)成像和动态对比增强磁共振成像(DCE-MRI)的定量参数对乳腺癌HER2表达的预测价值:这项回顾性研究纳入了2019年12月至2023年12月期间接受MRI检查的167名女性乳腺癌患者,分为48例HER2阳性、78例HER2低表达和41例HER2零表达癌症。所有患者均接受了IVIM成像和DCE-MRI检查。采用单因素方差分析、Kruskal-Wallis检验和χ2检验等统计分析方法,比较三组患者的临床数据、MRI特征和MRI定量参数,包括标准ADC(ADC)、纯扩散系数(D)、灌注相关扩散系数(D*)、灌注分数(f)、体积转移常数(Ktrans)、血管外细胞外间质体积比(Ve)和速率常数(Kep)。多变量逻辑回归用于确定区分 HER2 表达的独立预测因子。使用接收器操作者特征曲线(ROC)分析了重要的IVIM和DCE参数对不同HER2表达的诊断效果:结果:瘤周水肿、组织学分级和Kep在区分HER2阳性肿瘤和HER2低表达肿瘤方面的AUC为0.86(95%CI:0.78,0.91),是区分这两组肿瘤的独立预测因子。在HER2阳性和HER2-0阳性乳腺癌中,D*、Ktrans和Kep的组合模型预测HER2阳性和HER2-0阳性乳腺癌的AUC为0.74(95%CI:0.63,0.82),与单一参数相比,其预测效率没有提高(P > .05):体细胞内不连贯运动成像和动态对比增强磁共振成像的定量参数能从不同角度预测乳腺癌中不同的HER2表达,对治疗有一定的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative Parameters of Intravoxel Incoherent Movement Imaging and Dynamic Contrast Enhancement MRI for the Prediction of HER2-Zero, -Low, and -Positive Breast Cancers.

Rationale and objectives: To explore the predictive value of quantitative parameters from intravoxel incoherent movement (IVIM) imging and dynamic contrast enhancement MRI (DCE-MRI) for HER2 expression in breast cancer.

Materials and methods: This retrospective study included 167 women with breast cancer who underwent MRI from December 2019 to December 2023, categorized into 48 HER2-positive, 78 HER2-low and 41 HER2-zero cancers. All patients underwent IVIM imaging and DCE-MRI. Statistical analyses, including one-way ANOVA, Kruskal-Wallis test and χ2 test, were employed to compare clinical data, MRI features, and MRI quantitative parameters including standard ADC(ADC), pure diffusion coefficient(D), perfusion-related diffusion coefficient(D*), perfusion fraction(f), volume transfer constant(Ktrans), extravascular extracellular interstitial volume ratio(Ve) and rate constant(Kep) between the three groups. Multivariable logistic regression was used to identify independent predictors for distinguishing HER2 expressions. The diagnostic efficacy of significant IVIM and DCE parameters for different HER2 expressions was analyzed using receiver operator characteristic (ROC) curves.

Results: Peritumoral edema, histological grade and Kep achieved an AUC of 0.86(95%CI:0.78,0.91) in distinguishing HER2-positive tumors from HER2-low expressing tumors and were independent predictors for differentiating these two groups. Among HER2-positive and -zero breast cancers, the combined model of D*, Ktrans and Kep had an AUC of 0.74(95%CI:0.63,0.82) for the prediction of HER2-positive versus HER2-zero cancers, and its prediction efficiency was not improved compared with that of a single parameter(P > .05).

Conclusion: Quantitative parameters from intravoxel incoherent movement imaging and dynamic contrast enhancement MRI can predict different HER2 expressions in breast cancer from different perspectives, with implications for therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Academic Radiology
Academic Radiology 医学-核医学
CiteScore
7.60
自引率
10.40%
发文量
432
审稿时长
18 days
期刊介绍: Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.
期刊最新文献
Imaging Utilization and Cost of Substance Use in an Urban Academic Medical Center During the Contemporary Opioid Epidemic A Comparative Review of Imaging Journal Policies for Use of AI in Manuscript Generation Value of CT-Based Deep Learning Model in Differentiating Benign and Malignant Solid Pulmonary Nodules ≤ 8 mm Development and Validation of a Nomogram Based on DCE-MRI Radiomics for Predicting Hypoxia-Inducible Factor 1α Expression in Locally Advanced Rectal Cancer Development and Validation of an 18F-FDG PET/CT-based Radiomics Nomogram for Predicting the Prognosis of Patients with Esophageal Squamous Cell Carcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1